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Abstract

Weinstein and Yildiz (2007b) show that under a richness assumption which re-

laxes all common-knowledge restrictions on payoffs, every rationalizable action of

every (finite) type can be selected as the uniquely rationalizable action by perturbing

the higher-order beliefs (the structure theorem). Consequently, types with uniquely

rationalizable actions are generic in the universal type space (generic uniqueness).

This WY critique implies that (i) a prediction for a given type contains some rational-

izable action for all nearby types if and only if it consists of all rationalizable actions

for that type; (ii) selecting a prediction from the rationalizable actions is either ad hoc

or unnecessary. However, their richness assumption rules out prominent applications

in economic models and thus undermines their critique. In this paper, we provide an

algorithm which fully characterizes the WY selection and robust predictions without

relying on any richness assumption. By invoking the characterization, we delineate

the boundary of the WY critique by further characterizing the structure theorem as

well as generic uniqueness from the primitives. We also use economic examples such

as Cournot competition and auctions to illustrate our approach.
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1 Introduction

Economic models typically have multiple equilibria and a large set of rationalizable ac-

tions. An important research question is how to refine the large set of outcomes to make

sharp predictions. Starting from Carlsson and Van Damme (1993), the sizable literature

on the global games focuses on refining predictions via perturbation of higher-order be-

liefs. However, Weinstein and Yildiz (2007b) (hereafter, WY) prove two striking results,

which casts doubt on the methodology of the global-game literature. Specifically, WY

show:

• Structure Theorem: Any rationalizable action of any type can be selected as the

unique prediction via perturbation of higher-order beliefs.

• Generic Uniqueness: Types with unique rationalizable actions form a generic (i.e.,

open and dense) subset of the universal type space endowed with the product topol-

ogy.

The structure theorem implies that a prediction for a given type contains some rational-

izable action for all nearby types if and only if it consists of all rationalizable actions for

that type. Consequently, no selection identifies a robust prediction that refines the usu-

ally weak prediction of rationalizability. The generic uniqueness implies that selection is

unnecessary for a generic incomplete-information scenario.

The results of WY, however, rely on a “richness” assumption about the payoff un-

certainty, namely that every action is strictly dominant for some payoff parameter. As

WY observe, this assumption holds—in simultaneous-move games—if there is no com-

mon knowledge restriction on payoffs. Nevertheless, fixing a non-trivial dynamic game

tree contradicts the richness assumption (Chen, 2012; Penta, 2012). Even a static model

may impose some natural payoff structure that precludes the richness assumption. For

instance, in a standard auction model, no bidder has a strictly dominant bid. In an

oligopolistic competition, a relevant cost function may prevent any quantity from being
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strictly dominant.1,2 The assumption therefore substantially undermines the WY critique

on the global-game literature.3

This paper proposes a new approach to a robustness analysis regarding perturba-

tions on higher-order beliefs. Our goal is to characterize the WY selection and robust

predictions for a finite type without imposing richness assumption of any kind.4 That is,

without presupposing any structure on the payoff uncertainty, we identify, for any finite

type, the set of rationalizable actions that can be selected as well as robust predictions for

the strategic behaviors of the type.5 We reach our characterization in two steps:

1. We show that every finite game is intrinsically endowed with an upper ICR collec-

tion R↑
i (resp. the lower ICR collection R↓

i ) of all action sets that contain (resp. are

contained in) the rationalizable action set for some type;

2. Based on R↑
i , we show that each finite type ti is endowed with a collection S∗

i (ti) of

all action sets that contain the rationalizable action set for some neighboring type of

ti and S∗
i (ti).

First, note that the singletons in S∗
i (ti) fully characterize the WY selection for any finite

type ti. Second, the collection S∗
i (ti) also shapes the robust predictions about ti. Specif-

ically, we say that a prediction (a subset of rationalizable actions) for ti is weakly (resp.

strongly) robust for ti if the prediction intersects (resp. is contained in) every rational-

izable action set for every neighboring type of ti. Thus, a prediction is weakly (resp.

strongly) robust for ti if and only if the prediction intersects (resp. is contained in) every

set in S∗
i (ti). We use economic examples such as Cournot competition and auctions to

illustrate our results.
1We will scrutinize these examples in Section 3.
2A similar observation has been made in the global game literature. In particular, in a global game with

a one-sided dominance region, we may not be able to select some action as a unique prediction (Morris and

Shin, 2000; Goldstein and Pauzner, 2005; de Mesquita, 2011; Shadmehr and Bernhardt, 2012).
3There are also papers which relax the richness assumption in addressing similar but different issues.

For instance, Oury and Tercieux (2012) assume a weaker richness condition and use a version of WY’s

argument in their study of continuous implementation. Ely and P ↩eski (2011) generalize generic uniqueness

to the genericity of regular types without imposing the richness assumption.
4An extension to infinite types will be discussed in Section 5.
5A similar approach is also utilized in Chen, Takahashi, and Xiong (forthcoming).
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Our characterization delineates the boundary of the WY critique on the global-game

literature. First, we show that the structure theorem holds if and only if each set in the

lower ICR collection contains only elements that can be identified with singletons in the

upper ICR collection, i.e., every rationalizable action is uniquely rationalizable for some

type. Second, we show that the generic uniqueness holds if and only if each set in the

upper ICR collection contains some element that can be identified with a singleton in

the upper ICR collection, i.e., any minimal set of rationalizable actions is a singleton.

We demonstrate how our conditions can be applied to establish/invalidate the structure

theorem or generic uniqueness in our economic examples.

Our two-step characterization generalizes the idea in Penta (2013) that aims to pro-

pose a sufficient condition for the WY selection. Specifically, Penta (2013) assumes that

every player has some dominant actions, which generate uniquely rationalizable actions

in the universal space (corresponding to our Step 1). Based on such uniquely rationaliz-

able actions, he proposes a condition for an action to be selected for a type (corresponding

to our Step 2).6 Instead of assuming the existence of dominant actions, our Step 1 exploits

the richness of possible higher-order beliefs to identify all actions that are uniquely ra-

tionalizable for some type. Our Step 2 also highlights the necessity of considering non-

singleton rationalizable action sets in characterizing the WY selection.

2 Preliminaries

Fix a game G = (Ai, ui)i∈I , where each player i ∈ I is endowed with a set of actions

Ai and a payoff function ui that depends on the action profile a ∈ A := ∏i∈I Ai and a

payoff-relevant parameter θ ∈ Θ. Assume that I, A, and Θ are nonempty and finite sets.

While we will not impose any condition on G, we state here WY’s richness condition for

the ease of reference:

Definition 1 G = (Ai, ui)i∈I satisfies the richness condition if for every i ∈ N and every ai ∈
6The condition claimed in Penta (2013) is incorrect. Specifically, in Subsection 4.3, we provide a coun-

terexample (Example 1) to Penta (2013, Theorem 1) and offer a fix of the mistake (Corollary 1). However, as

we show by another example (Example 2), the corrected condition is still not necessary for WY selection.
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Ai, there exists θai ∈ Θ such that ui (θ
ai , ai, a−i) > ui

(
θai , a′i, a−i

)
for every a′i ∈ Ai \ {ai} and

every a−i ∈ A−i.

For any πi ∈ ∆ (Θ × A−i), we use BRi (πi) to denote the set of best replies to πi.

That is,

BRi (πi) = arg max
ai∈Ai

∑
θ,a−i

ui (θ, ai, a−i)πi [θ, a−i] .

A model is a tuple (T, κ) where T = ∏i∈I Ti is a type space which associates a belief

κti ∈ ∆ (Θ × T−i) for each type ti ∈ Ti.7 Assume that ti 7→ κti is a continuous mapping.

Given a type ti ∈ Ti, we can compute the first-order belief of ti (i.e., his belief about Θ)

by setting t1
i equal to the marginal distribution of κti on Θ. We can also compute the

second-order belief of ti (i.e., his belief about
(
θ, t1

−i
)
) by setting

t2
i [E] = κti

[{
(θ, t−i) :

(
θ, t1

−i

)
∈ E

}]
for every measurable E ⊂ Θ × (∆ (Θ))|I|−1. We can compute the entire hierarchy of

beliefs
(
t1
i , t2

i , . . . , tn
i , . . .

)
by proceeding in this way. A model is said to be finite if |T| < ∞.

We collect all such hierarchies and construct the universal type space T∗
i . This has

the property that ti = (t1
i , t2

i , . . .) ∈ T∗
i if and only if there exists some type t′i in some

model such that tn
i =

(
t′i
)n for every n. Endowed with the product topology, T∗

i is a

compact metrizable space and admits a homeomorphism κ∗i : T∗
i → ∆(Θ × T∗

−i) (Mertens

and Zamir, 1985). Thus, we can regard (T∗, κ∗) as a model, where κ∗ti
:= κ∗i (ti) for every

ti ∈ T∗
i . Moreover, the hierarchy of beliefs of ti ∈ T∗

i in the model (T∗, κ∗) is given by ti

itself, and this is why we use tn
i to denote both the n-th component of ti and the n-th order

belief of ti in (T∗, κ∗). A type ti ∈ T∗
i is said to be a finite type if there exists a finite model

(T, κ) and a type t′i ∈ Ti such that t′i has the hierarchy of beliefs ti. With a further abuse of

notations, we say that a sequence of types {ti,m}∞
m=0 on T∗

i converges to a type ti in some

(not necessarily the universal) model, denoted as ti,m → ti, if for every n, tn
i,m → tn

i in the

weak∗ topology as m → ∞.

7Throughout the paper, for any metrizable space Y, we use ∆ (Y) to denote the space of probability

measures on the Borel σ-algebra of Y. We endow ∆ (Y) with the weak∗ topology. Moreover, we endow a

product space with the product topology, a subspace with the relative topology, and a finite set with the

discrete topology. Let |E| denote the cardinality of a set E.

5



Let (T, κ) be a model. We define the solution concept of interim correlated rational-

izability (ICR) (Dekel, Fudenberg, and Morris, 2006, 2007) as follows. For i ∈ I and type

ti ∈ Ti, set ICR0
i (ti) = Ai; define sets ICRn

i (ti) for n > 0 iteratively by letting ai ∈ ICRn
i (ti)

if and only if there is some conjecture νi ∈ ∆ (Θ × T−i × A−i) such that

(i) margΘ×T−i
νi = κti ;

(ii) νi

[{
(θ, t−i, a−i) : a−i ∈ ICRn−1

−i (t−i)
}]

= 1;

(iii) ai ∈ BRi

(
margΘ×A−i

νi

)
.

Then, define

ICRi (ti) =
∞∩

n=0

ICRn
i (ti) .

We write ICRn−1
−i (t−i) = ∏j ̸=i ICRn−1

j
(
tj
)

and ICR−i (t−i) = ∏j ̸=i ICRj
(
tj
)
. Call conjec-

ture νi ∈ ∆ (Θ × T−i × A−i) valid for ti if margΘ×T−i
νi = κti and νi [a−i ∈ ICR−i (t−i)] = 1.

Dekel, Fudenberg, and Morris (2007, Proposition 4) show that

ICRi (ti) =
∪

νi is a valid conjecture for ti

BRi

(
margΘ×A−i

νi

)
; (1)

moreover, ICRi (·) only depends on the belief hierarchy of a type. We will hereafter iden-

tify a type with its belief hierarchy. We reproduce Chen (2012, Lemma 3) here for the sake

of later use.

Lemma 1 For any type ti ∈ T∗
i , there is a sequence of finite types {ti,m}∞

m=0 ⊂ T∗
i such that

ti,m → ti and ICRi (ti,m) = ICRi (ti) for every m.

Following WY, we now say that an action can be selected for ti if there is a sequence

of types {ti,m} converging to ti along which ai is uniquely rationalizable. Namely, a mod-

eler who knows the belief of a type ti of interest only approximately cannot preclude the

possibility that ai is the unique rationalizable action for some “true type” ti,m.

Definition 2 Given a model (T, κ), an action ai ∈ Ai can be (WY-)selected for ti ∈ Ti if there is

a sequence of types {ti,m}∞
m=0 ⊂ T∗

i such that ti,m → ti and ICRi (ti,m) = {ai} for every m.
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A prediction for a type ti is a nonempty subset Pi of ICRi (ti). We may think of Pi as a

statement that holds if and only if the action being played lies in Pi.

We then introduce the definition of robust prediction as follows.8

Definition 3 Given a model (T, κ), a prediction Pi ⊂ ICRi (ti) is weakly (resp. strongly) robust

for type ti ∈ Ti if for every sequence of types {ti,m}∞
m=0 ⊂ T∗

i such that ti,m → ti, we have

Pi ∩ ICRi (ti,m) ̸= ∅ (resp. Pi ⊂ ICRi (ti,m)) for sufficiently large m.9

That is, if a modeler knows the belief of a type ti up to sufficiently high orders,

some (resp. every) element in Pi predicts rationalizable actions for “true type” ti,m cor-

rectly. Clearly, ICRi (ti) is a weakly robust prediction for ti. Under the richness condition,

WY show that every rationalizable action can be selected, and hence ICRi (ti) is the only

weakly robust prediction for ti, and no prediction is strongly robust if |ICRi (ti) | ≥ 2.10

3 Examples

In this section, we present two economic examples of incomplete-information games

where no player has a dominant action at any state, and thus WY’s analysis cannot be

applied. Nevertheless, we can “endogenize” the richness condition by identifying a large

set of actions that are uniquely rationalizable for some type.

8See Subsection 3.2 for illustration of the notions of prediction and robust prediction.
9Here we define robust predictions from the interim perspective. Our notion shares a similar spirit as

the ex ante notion of robust equilibrium defined in Kajii and Morris (1997) and a robust set of equilibria

defined in Morris and Ui (2005).
10One can also define a robust* prediction for ti as a prediction that contains all rationalizable actions for

all types close to ti. By the upper hemicontinuity of ICR (·), we can show that even without the richness

condition, ICR (ti) is the only robust* prediction for ti.
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3.1 Cournot Oligopoly with Uncertainty in Demand

Consider the Cournot oligopoly game, where the inverse demand is linear in the form of

P(Q, θ) = θ − Q with Q = ∑i qi and parameter θ > 0, and marginal costs are constant

and normalized to be 0.11 Assume that firm i can produce any nonnegative output qi.

Thus firm i’s profit is given by ui(q1, . . . , q|I|, θ) =
(

θ − ∑j qj

)
qi.

Under complete information about θ, it is well known that the Cournot oligopoly

game is dominance-solvable (i.e., has a unique rationalizable action) if and only if |I| = 2

(Bernheim, 1984). Moreover, if |I| = 2, then the dominance solvability result extends to

the case with incomplete information (Weinstein and Yildiz, 2007a, Proposition 1).12 We

will thus analyze the case where |I| ≥ 3 and firms have incomplete information about θ.

For simplicity, we assume that θ takes two possible values, θH and θL with θH > θL > 0.13

We denote by Et1
i
(θ) the expected value of θ with respect to the first-order belief t1

i

of type ti.

Proposition 1 Consider the Cournot oligopoly game with |I| ≥ 3 firms and uncertainty in de-

mand.

(a) Suppose that θH/θL > (|I| − 1)/2. Then action q is uniquely rationalizable for some type

in T∗
i if and only if q ∈ [0, θH/2].

(b) Suppose that θH/θL ≤ (|I| − 1)/2. Then we have ICRi(ti) =
[
0, Et1

i
(θ)/2

]
for any

ti ∈ T∗
i ; in particular, no type has a uniquely rationalizable action.

To see how the condition on θH/θL is used in the proof of part (a), consider a type

τi,1,H who is certain that “θ = θH and each opponent j ̸= i is certain about θ = θL.” Since

11We allow for negative prices which only mean that the demand function is linear in prices even below

marginal costs.
12Weinstein and Yildiz (2011) study the sensitivity of equilibrium behavior to higher-order beliefs in

Cournot games. In contrast, here we focus on selecting rationalizable actions as uniquely rationalizable

actions (see also Subsection 4.5.1). The notion of convergence of higher-order beliefs that Weinstein and

Yildiz (2011) consider is also slightly stronger than the product convergence that WY and we consider here.
13A similar exercise can be done with uncertainty in cost functions.
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τi,1,H believes that each j ̸= i plays an action of at most θL/2, the action that τi,1,H can

rationalize is at least
1
2

(
θH − (|I| − 1)

θL

2

)
,

which is strictly positive since θH/θL > (|I| − 1)/2. Similarly, we consider the type τi,2,L

who is certain that “θ = θL and each opponent j ̸= i is of type τ j,1,H.” Then the action that

τi,2,L can rationalize is at most

1
2

(
θL − (|I| − 1)

1
2

(
θH − (|I| − 1)

θL

2

))
,

which is strictly below θL/2. Continuing these processes alternatingly sufficiently many

times, we can construct a type for which action 0 is uniquely rationalizable. Then the final

step of the proof is to extend this result to any action in [0, θH/2]. See Appendix A.1 for a

more formal proof.

Proposition 1 exhibits a sharp discontinuity: (a) if θH/θL is large, then any action

that is rationalizable for some type is uniquely rationalizable for some other type; (b) if

θH/θL is small, then no type has a uniquely rationalizable action. In particular, if |I| =
3, with an arbitrarily small amount of uncertainty in demand, we have θH/θL > 1 =

(|I| − 1)/2, and Proposition 1(a) applies. This is in contrast with the case under complete

information, where the Cournot oligopoly game is not dominant-solvable.

Note that Proposition 1 continues to hold for finely discretized action spaces. For

example, suppose that firms can produce outputs only in dN, the set of nonnegative

integer multiples of d > 0. Assume θL/2 ∈ dN for simplicity. Then, (a) if θH/θL > (|I| −
1)/2 + d/θL, then any action in [0, (θH + d)/2] ∩ dN is uniquely rationalizable for some

type in T∗
i ; (b) if θH/θL ≤ (|I| − 1)/2+ d/θL, then we have ICRi(ti) =

[
0, Et1

i
(θ + d)/2

]
∩

dN.

3.2 First-Price Auction with Discrete Bids

Consider a sealed-bid first-price auction with |I| ≥ 3, where bidders submit their bids

b1, . . . , b|I| ∈ {0, 1, . . . , 9, 10} simultaneously. Tie breaking is based on a fair coin toss.

Each bidder’s value for the object is in {0, 1, . . . , 9, 10}, i.e., Θ = {0, 1, . . . , 9, 10}I . Observe
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that in this example, no bid is strictly dominant for any value and thus WY’s richness

condition does not hold.

We show that bidding b is uniquely rationalizable for some type in T∗
i if and only

if b ̸= 10. To see the “if” direction, let τi,0 be the type with complete information that all

bidders have values 0. It is easy to see that ICRi(τi,0) = {0}. We construct types τi,b ∈ T∗
i

with ICRi(τi,b) = {b} inductively. For any b ∈ {1, . . . , 9}, let τi,b be the type of bidder i

who is certain that his own value is b + 1 and tj = τ j,b−1 for j ̸= i. Then, by the induction

hypothesis, type τi,b believes that the opponents bid b − 1. Since |I| ≥ 3, bidding b is

the unique best response. By (1), we have ICRi(τi,b) = {b}. The “only if” direction is

immediate since any type who believes that his own value is 10 is indifferent between

bidding 0 and 10, and any other type strictly prefers bidding 0.

We also illustrate the notion of robust prediction in this example. Let τi,10 be the type

with complete information that all bidders have values 10. Then, we have ICRi(τi,10) =

{0, 1, . . . , 9, 10} since every bid is a best reply to the belief that the opponents bid 10. On

the other hand, since bidding 10 is weakly dominated by bidding 0 for τi,10, {0, 1, . . . , 9}
is a weakly robust prediction for τi,10.

4 Main Results

4.1 The Upper and Lower ICR Collections

We denote by Ai the collection of all nonempty subsets of Ai. For each (Bj)j ̸=i with

Bj ⊂ Aj, we denote by B−i the collection of all product sets B−i = ∏j ̸=i Bj with Bj ∈ Bj.

Say that πi ∈ ∆(Θ × A−i) is consistent with µi ∈ ∆(Θ × A−i) if there exists a function

φi : Θ ×A−i → ∆(A−i) such that

φi(θ, R−i)[a−i] > 0 ⇒ a−i ∈ R−i; (2)

πi[θ, a−i] = ∑
R−i∈A−i

µi[θ, R−i]φi(θ, R−i)[a−i]. (3)

For a given µi ∈ ∆ (Θ ×A−i), we denote by Πµi
i the set of πi’s that are consistent with µi.
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We define the upper ICR collection R↑
i and the lower ICR collection R↓

i as follows:

R↑
i := {Ri ∈ Ai : ∃ti ∈ T∗

i s.t. Ri ⊃ ICRi (ti)},

R↓
i := {Ri ∈ Ai : ∃ti ∈ T∗

i s.t. Ri ⊂ ICRi (ti)}.

Note that identifying R↑
i is equivalent to identifying all minimal ICR sets; identifying R↓

i

is equivalent to identifying all maximal ICR sets.

Both the upper and lower ICR collections will play important roles in our character-

ization results. For example, we will show that the structure theorem holds if and only

if each set in the lower ICR collection contains only elements that can be identified with

singletons in the upper ICR collection (see Corollary 2 in Subsection 4.3).

We now provide algorithms to compute R↑
i and R↓

i from the primitives.14 For the

algorithm to compute R↑
i , let R↑,0

i := {Ai} for each i ∈ I. For each i ∈ I and n ≥ 1, we

define R↑,n
i inductively as follows:

R↑,n
i :=

Ri ∈ Ai : ∃µi ∈ ∆
(

Θ ×R↑,n−1
−i

)
s.t. Ri ⊃

∪
πi∈Π

µi
i

BRi(πi)

 .

First, note that each step is a finite-dimensional and linear problem. Second, it is without

loss of generality that µi puts positive probabilities only on minimal sets in R↑,n−1
−i . Third,

observe that R↑,n
i is increasing in the set-inclusion order, i.e., R↑,0

i ⊂ R↑,1
i ⊂ R↑,2

i ⊂ · · · .

Moreover, R↑,n′

i = R↑,n
i for all i ∈ I and n′ ≥ n whenever Rn

i = Rn−1
i for all i ∈ I.

Therefore, the computation takes at most ∑i 2|Ai| − 2 |I| steps.

For the algorithm to compute R↓
i , let R↓,0

i := Ai for each i ∈ I. For each i ∈ I and

n ≥ 1, we define R↓,n
i inductively as follows:

R↓,n
i :=

Ri ∈ Ai : ∃µi ∈ ∆
(

Θ ×R↓,n−1
−i

)
s.t. Ri ⊂

∪
πi∈Π

µi
i

BRi(πi)

 .

Symmetrically to R↑,n
i , R↓,n

i is decreasing and reaches its limit in at most ∑i 2|Ai| − 2 |I|
steps.

14We are not aware of any finite-step finite-dimensional algorithm to compute all (not necessarily mini-

mal or maximal) ICR sets. Fortunately, in order to characterize the WY selection, the structure theorem, and

generic uniqueness, it is enough to use R↑
i and R↓

i .
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The next proposition shows that from the primitives (i.e., the fixed game G = (Ai, ui)i∈I),

we can obtain R↑
i (resp. R↓

i ) by computing R↑,n
i (resp. R↓,n

i ) in finitely many steps (see

Appendix A.2 for the proof). Thus, we will subsequently take R↑
i and R↓

i as given.

Proposition 2 For any n ≥ ∑i 2|Ai| − 2 |I|, we have (a) R↑,n
i = R↑

i ; (b) R↓,n
i = R↓

i .

4.2 Characterizations of the WY Selection and Robust Predictions

Fix a finite model (T, κ). Say that πi ∈ ∆(Θ× A−i) is consistent with µi ∈ ∆
(

Θ × T−i ×R↑
−i

)
if there exists a function φi : Θ × T−i ×R↑

−i → ∆(A−i) such that

φi(θ, t−i, R−i)[a−i] > 0 ⇒ a−i ∈ R−i; (4)

πi[θ, a−i] = ∑
t−i,R−i

µi [θ, t−i, R−i] φ−i(θ, t−i, R−i)[a−i]. (5)

For a given µi ∈ ∆
(

Θ × T−i ×R↑
−i

)
, with a slight abuse of notations, we also denote by

Πµi
i the set of all conjectures that are consistent with µi.
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In order to characterize the WY selection, for each type ti ∈ T∗
i , we denote by S∗

i (ti)

the collection of all action sets that contain some ICR set for some neighboring type of ti:

S∗
i (ti) := {Ri ∈ Ai : ∃ {ti,m}∞

m=0 ⊂ T∗
i s.t. ti,m → ti and Ri ⊃ ICRi (ti,m) , ∀m}.

Then, characterizing actions that can be selected for ti amounts to determining the single-

tons in S∗
i (ti). We now define an algorithm that can be used to “solve” S∗

i (ti) in finitely

many steps.

For each i ∈ I and ti ∈ Ti, let S0
i (ti) := R↑

i , and for each n ≥ 1, define

Sn
i (ti) :=


Ri ∈ Ai :

∀ε ∈ (0, 1] , ∃
(
µi, µ′

i
)
∈ ∆

(
Θ × T−i ×R↑

−i

)
× ∆

(
Θ ×R↑

−i

)
s.t.

(i) margΘ×T−i
µi = κti ;

(ii) µi

[{
(θ, t−i, R−i) : R−i ∈ Sn−1

−i (t−i)
}]

= 1;

(iii) Ri ⊃
∪
(πi,π′

i)∈Π
µi
i ×Π

µ′i
i

BRi
(
(1 − ε)πi + επ′

i
)


.

(6)

15In particular, we will use Πµi
i for both µi ∈ ∆ (Θ ×A−i) and µi ∈ ∆

(
Θ × T−i ×R↑

−i

)
.
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Note that each step is a semialgebraic problem, i.e., a problem based on finitely many vari-

ables and polynomial equations and inequalities. Also, it is without loss of generality that

µi and µ′
i put positive probabilities only on minimal sets in Sn−1

−i and in R↑
−i (i.e., minimal

ICR sets), respectively. Moreover, Sn
i (ti) is decreasing, and reaches its limit, denoted by

Si (ti), in at most ∑i

(
|R↑

i | − 1
)
|Ti| steps. Put differently, Si (ti) is the largest (i.e., finest)

profile of sub-collections of R↑
i that satisfies the following fixed-point property:

Si (ti) =


Ri ∈ Ai :

∀ε ∈ (0, 1] , ∃
(
µi, µ′

i
)
∈ ∆

(
Θ × T−i ×R↑

−i

)
× ∆

(
Θ ×R↑

−i

)
s.t.

(i) margΘ×T−i
µi = κti ;

(ii) µi [{(θ, t−i, R−i) : R−i ∈ S−i (t−i)}] = 1;

(iii) Ri ⊃
∪
(πi,π′

i)∈Π
µi
i ×Π

µ′i
i

BRi
(
(1 − ε)πi + επ′

i
)


.

(7)

Formally, we obtain the following result

Proposition 3 Si (ti) = S∗
i (ti) for finite type ti.

See Appendix A.3 for the proof. We prove one direction Si (ti) ⊂ S∗
i (ti) by exploit-

ing the fixed point property of Si(ti) in (7) and for each Ri ∈ Si (ti), constructing types

{ti,m} with ti,m → ti and Ri ⊃ ICRi(ti,m). The other direction S∗
i (ti) ⊂ Si (ti) follows from

establishing that S∗
i (ti) also satisfies the same fixed point property.16 Intuitively speak-

ing, iteration in Sn
i (ti) is to match ti,m with the limit type ti up to the n-th order, and ε in

(6) and (7) corresponds to perturbations in beliefs at each order.

Recall that an action is WY-selected for a type ti if there is a sequence of types

{ti,m}∞
m=0 ⊂ T∗

i such that ti,m → ti and ICRi (ti,m) = {ai} for every m. Also recall that

a prediction Pi ⊂ ICRi (ti) is weakly (resp. strongly) robust for type ti ∈ Ti if for every

sequence of types {ti,m}∞
m=0 ⊂ T∗

i such that ti,m → ti, we have Pi ∩ ICRi (ti,m) ̸= ∅ (resp.

Pi ⊂ ICRi (ti,m)) for sufficiently large m. The following theorems, which follow immedi-

ately from Proposition 3 show that Si (ti) contains enough information to characterize the

WY selection and robust predictions for ti.

16We will employ the fixed-point property to define perturbed curb collections when we consider infinite

types in Section 5.
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Theorem 1 Action ai can be selected for finite type ti if and only if {ai} ∈ Si (ti).

Theorem 2 Prediction Pi is weakly (resp. strongly) robust for finite type ti if and only if Pi ∩Ri ̸=
∅ (resp. Pi ⊂ Ri) for any Ri ∈ Si (ti).

4.3 A Reduction to Singletons

By Proposition 3, Si (ti) fully characterizes all action sets that contain some ICR set in

a neighborhood of ti. Also, the algorithm of computing Si (ti) stops in finitely many

steps, and each step is a finite-dimensional problem. However, unlike conventional al-

gorithms in game theory (such as the algorithm of computing all rationalizable actions

in a complete-information game), our algorithm involves probabilities over collections of

action sets, which may appear complicated at first glance. In this subsection, we simplify

our algorithm by reducing the Sn
i (ti) sequence to collections of singletons. We also com-

pare the simplified algorithm with the sufficient condition for the WY selection claimed

in Penta (2013).

Let Ru
i (where superscript u stands for uniqueness) be the set of all actions that are

uniquely rationalizable for some type:

Ru
i :=

{
ai ∈ Ai | {ai} ∈ R↑

i

}
.

Given a finite model (T, κ), for each i ∈ I and ti ∈ Ti, let Su,0
i (ti) := ICRi (ti)∩ Ru

i , and for

each n ≥ 1, define

Su,n
i (ti) :=


ai ∈ Ru

i :

∃µu
i ∈ ∆

(
Θ × T−i × Ru

−i
)

s.t.

(i) margΘ×T−i
µu

i = κti ;

(ii) µu
i

[{
(θ, t−i, a−i) : a−i ∈ Su,n−1

−i (t−i)
}]

= 1;

(iii) ai ∈ BRi

(
margΘ×A−i

µu
i

)


. (8)

We have Ru
i = Su,0

i (ti) ⊃ Su,1
i (ti) ⊃ · · · , which reaches its limit Su

i (ti) in finitely many

steps.17

17Note that Su
i (ti) can be empty. More precisely, Su

i (ti) = ∅ if and only if ICRj
(
tj
)
∩ Ru

j = ∅ for some

tj in the smallest belief-closed type space containing ti. In this case, Corollary 1 is vacuously true, and we

should instead apply Theorem 1.
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Corollary 1 Action ai can be selected for finite type ti if ai ∈ Su
i (ti).

Proof By Theorem 1, it suffices to show that ai ∈ Su
i (ti) implies {ai} ∈ Si (ti). We

prove by induction that ai ∈ Su,n
i (ti) implies {ai} ∈ Sn

i (ti). The case for n = 0 holds by

definition. Now suppose that ai ∈ Su,n−1
i (ti) implies {ai} ∈ Sn−1

i (ti) for any i ∈ I and

ti ∈ Ti. Let ai ∈ Su,n
i (ti) and we show that {ai} ∈ Sn

i (ti). Since ai ∈ Su,n
i (ti), there exists

µu
i ∈ ∆

(
Θ × T−i × Ru

−i
)

that satisfies (i)-(iii) in (8). Moreover, since ai ∈ Ru
i , there exists

t′i ∈ T∗
i such that {ai} = ICRi

(
t′i
)
. By (1), we have {ai} = BRi

(
margΘ×A−i

ν′i

)
for any

valid conjecture ν′i ∈ ∆(Θ × T∗
−i × A−i) for t′i. Define

(
µi, µ′

i
)
∈ ∆

(
Θ × T−i ×R↑

−i

)
×

∆
(

Θ ×R↑
−i

)
such that

µi [θ, t−i, {a−i}] = µu
i [θ, t−i, a−i] ;

µ′
i [θ, R−i] = κ∗t′i

[{(θ, s−i) : ICR−i(s−i) = R−i}]

for each (θ, t−i, a−i, R−i) ∈ Θ × T−i × A−i × R↑
−i. Then, µi satisfies (i) and (ii) in (6)

because µu
i satisfies (i) and (ii) in (8) and we assume the induction hypothesis. It follows

from (iii) in (8) and {ai} = BRi

(
margΘ×A−i

ν′i

)
for any valid conjecture ν′i for t′i that

{ai} = BRi
(
(1 − ε)πi + επ′

i
)

for every (πi, π′
i) ∈ Πµi

i × Πµ′
i

i . Thus, {ai} ∈ Sn
i (ti).

Observe that under the richness condition, Ru
i = Ai, and therefore Su,n

i (ti) = ICRn
i (ti)

for every n and Su
i (ti) = ICRi (ti). Thus, Corollary 1 immediately reproduces WY’s result

that every ICR action can selected for every finite type, under the richness condition.

To compare Corollary 1 with Penta (2013, Theorem 1), we recap his analysis as fol-

lows. First, let A0
i be the set of actions of player i that is strictly dominant in some θ. Then

define

An
i :=

{
ai ∈ Ai : ∃µu

i ∈ ∆
(

Θ ×An−1
−i

)
s.t. {ai} = BRi(µ

u
i )
}

,

and A∞
i =

∪
n≥0 An

i . Finally, Penta’s Theorem 1 states that every action in the following

set can be selected for ti:

ICRi (ti;A∞) :=

ai ∈ ICRi (ti) ∩A∞
i :

∃µu
i ∈ ∆

(
Θ × T−i ×A∞

−i
)

s.t.

(i) margΘ×T−i
µu

i = κti ;

(ii) ai ∈ BRi

(
margΘ×A−i

µu
i

)
 .
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Thus, there are two essential differences between our Corollary 1 and Penta’s Theorem 1.

First, Ru
i consists of all actions that are uniquely rationalizable for some type, whereas the

definition of A∞
i starts from dominant actions A0

i . Obviously, Ru
i is larger than A∞

i and

Ru
i can be nonempty even if players have no dominant actions in any state. Second, we

define Su,n
i (ti) recursively from ICRi (ti) ∩ Ru

i , whereas Penta takes ICRi (ti;A∞) without

the recursion.18 We now present two examples. The first example shows that we may

not be able to select an action in ICRi (ti;A∞) for ti. The second example shows that it

is possible to have {ai} ∈ Si (ti) but ai /∈ Su
i (ti). That is, the condition in Corollary 1 is

sufficient, but not necessary for the WY selection.

Example 1 Consider a game with I = {1, 2}, A1 = {U, D}, A2 = {L, L′, R}, Θ = {θ0, θ1},

and the payoffs u1 and u2 are given by

θ0 :

L L′ R

U 1, 1 0, 1 0, 0

D 0, 1 1, 1 1, 0

and θ1 :

L L′ R

U 0, 0 0, 0 0, 1

D 0, 0 0, 0 0, 1

.

Let τi,0 be the type of player i with complete information about θ = θ0. Then it is easy to

see that ICR1 (τ1,0) = {U, D}. Moreover, Ru
1 = A∞

1 = {D}, Ru
2 = A∞

2 = {R}, and

ICR1 (τ1,0;A∞) = {D}. Thus, Penta (2013, Theorem 1) claims that D can be selected for τ1,0.

However, we have R↑
1 = {{D}, {U, D}} and R↑

2 = {{L, L′}, {R}, {L, L′, R}}. Following the

algorithm in Subsection 4.2, we have S1(τ1,0) = {{U, D}} and S2(τ2,0) = {{L, L′}, {L, L′, R}}.

Thus, by Theorem 1, no action can be selected for τ1,0.

Example 2 Modifying Morris, Takahashi, and Tercieux (2012, Example 2), consider the following

18In Penta (2013, Section 3.2), he observes that his Theorem 1 remains true if A∞ is replaced by the set of

actions for which there exists payoff states that make these actions uniquely rationalizable. This observation

follows from Frankel, Morris, and Pauzner (2003) and can be applied to our auction example but not to the

Cournot example. In Penta (2013, Section 4.4), he further considers replacing A∞ with A∗
i ⊂ Ru

i such that

each ai ∈ A∗
i is a unique best reply to some belief over Θ ×A∗

−i. He then claims in Proposition 3 that every

action in ICRi (ti;A∗) can be selected for ti. Again, the set ICRi (ti;A∗) should be defined recursively as we

do in Corollary 1 in order to make his Proposition 3 correct (Example 1). This modified version is still not

necessary for the WY selection (Example 2).
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extensive-form game

1

(1, 3)

(0, 2)

(1, 1)

(θ, 2)

(1, 3)
(2, 1)

(0, 1)

U

D

2

1

L

X

L

X

R

R

u

d

and its reduced normal form

θ :

L R X

U 1, 3 0, 2 1, 1

Du θ, 2 1, 3 2, 1

Dd θ, 2 1, 3 0, 1

with θ ∈ Θ = {0, 2}. (The following argument is insensitive to small payoff perturbations on

terminal nodes in the extensive form.) Let τi,0 be the type of player i with complete information

about θ = 0. Then we have R↑
1 = S1(τ1,0) = {{Du, Dd}, {U, Du, Dd}} and R↑

2 = S2(τ2,0) =

{{R}, {L, R}, {R, X}, {L, R, X}}. Thus, by Theorem 1, R can be selected for τ2,0. On the other

hand, we have Ru
1 = ∅ and Ru

2 = {R}, and hence Su
1 (τ1,0) = Su

2 (τ2,0) = ∅. The example

shows that while ai ∈ Su
i (ti) is a sufficient condition for ai to be selected for ti, it is not necessary

and missing cases where selection is possible. Note that the state space is too small to satisfy the

extensive-form richness condition in Chen (2012).

4.4 The Structure Theorem and Generic Uniqueness

Based upon our characterization of the WY selection, we fully characterize the structure

theorem as well as generic uniqueness in this subsection. Unlike the existing papers, our

characterizations will be stated in terms of the primitives, and will not presuppose the

existence of dominant actions or any richness condition. The characterizations will thus

delineate an exact boundary of the WY critique.
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Recall that Ru
i is the set of actions that are uniquely rationalizable for some type. We

first characterize the structure theorem.

Corollary 2 The following three conditions are equivalent:

1. for any type ti ∈ T∗
i , any action in ICRi (ti) can be selected for ti;

2. for any finite type ti ∈ T∗
i , any action in ICRi (ti) can be selected for ti;

3. for any i ∈ I and Ri ∈ R↓
i , we have Ri ⊂ Ru

i .

Proof “1 ⇒ 2” is obvious, and “2 ⇒ 1” follows from Lemma 1.

For “2 ⇒ 3” for any i ∈ I and Ri ∈ R↓
i , by Lemma 1, there exists a finite type ti such

that Ri ⊂ ICRi(ti). Thus we have Ri ⊂ ICRi(ti) ⊂ Ru
i .

For “3 ⇒ 2” by Corollary 1, it suffices to show that ICRi(ti) ⊂ Su
i (ti) for any finite

type ti. We fix any finite model (T, κ), and prove by induction that ICRi(ti) ⊂ Su,n
i (ti)

for any i ∈ I and ti ∈ Ti. The case of n = 0 is obvious. Now suppose that ICRi(ti) ⊂
Su,n−1

i (ti) for any i ∈ I and ti ∈ Ti. Given any i ∈ I and ti ∈ Ti, consider any valid

conjecture νi ∈ ∆(Θ × T−i × A−i) for ti. Then, µu
i = νi satisfies (i) and (ii) in (6) because

νi is valid for ti and we assume the induction hypothesis. Thus BRi

(
margΘ×A−i

νi

)
⊂

Su,n
i (ti). By (1), we have ICRi(ti) ⊂ Su,n

i (ti).

This corollary reproduces Weinstein and Yildiz (2007b, Proposition 1) and Chen

(2012, Theorem 1). In words, a necessary and sufficient condition for every rationaliz-

able action to be selected for any (finite) type (i.e., the structure theorem) is that every

rationalizable action is uniquely rationalizable for some type. This condition is called

richness in uniquely rationalizable actions (RURA) in Chen (2012). Note that the RURA

condition is not imposed on the primitives directly, but our algorithms to compute R↑
i

and R↓
i provide a way to decide whether the RURA condition holds from the primitives.

We then turn to characterize generic uniqueness.

Corollary 3 The following two conditions are equivalent:
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1. for any i ∈ I, {ti ∈ T∗
i : |ICRi(ti)| = 1} is open and dense in T∗

i ;

2. for any i ∈ I and Ri ∈ R↑
i , we have Ri ∩ Ru

i ̸= ∅.

Proof For the “1 ⇒ 2” direction, for any i ∈ I and Ri ∈ R↑
i , by Lemma 1, there exists a

finite type ti such that Ri ⊃ ICRi(ti). Since {ti ∈ T∗
i : |ICRi(ti)| = 1} is dense in T∗

i and

ICRi(·) is upper hemicontinuous, we have ICRi(ti) ∩ Ru
i ̸= ∅, and hence Ri ∩ Ru

i ̸= ∅.

For the “2 ⇒ 1” direction, {ti ∈ T∗
i : |ICRi(ti)| = 1} is open in T∗

i since ICRi(·) is

upper hemicontinuous. To show that {ti ∈ T∗
i : |ICRi(ti)| = 1} is dense in T∗

i , by Lemma 1

and Corollary 1, it suffices to show that ICRi(ti)∩ Su
i (ti) ̸= ∅ for any finite type ti. We fix

any finite model (T, κ), and prove by induction that ICRi(ti) ∩ Su,n
i (ti) ̸= ∅ for any i ∈ I

and ti ∈ Ti. The case of n = 0 is obvious. Now suppose that ICRi(ti) ∩ Su,n−1
i (ti) ̸= ∅ for

any i ∈ I and ti ∈ Ti. Then, given any i ∈ I and ti ∈ Ti, there exists νi ∈ ∆(Θ × T−i × A−i)

such that margΘ×T−i
νi = κti and νi

[
a−i ∈ ICR−i(t−i) ∩ Su,n−1

−i (t−i)
]
= 1. Since νi is a

valid conjecture for ti and µu
i = νi satisfies (i) and (ii) in (6), by (1), we have ICRi(ti) ∩

Su,n
i (ti) ⊃ BRi

(
margΘ×A−i

νi

)
̸= ∅.

Corollary 3 shows that a necessary and sufficient condition for types with unique

rationalizable actions to be generic in the universal type space (i.e., generic uniqueness) is

that each set in the upper ICR collection contains some element that can be identified with

a singleton in the upper ICR collection, i.e., any minimal ICR set is a singleton. Note that

generic uniqueness (Condition 1 in Corollary 3) is a weaker statement than the structure

theorem (Conditions 1 and 2 in Corollary 2): the former requires that every rationalizable

action be selected for each type, whereas the latter only requires that some rationalizable

action be selected for each type. In particular, Corollary 3 can apply to games with weakly

dominated actions in any state (see the next Subsection). In WY, the richness condition

implies both results and renders their distinction moot.
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4.5 Applications

4.5.1 The Cournot Example Revisited

So far we assume that game G is finite in our formal analysis, but the Cournot example

in Subsection 3.1 has infinitely many actions. There are two ways to apply our results to

this example. One is to discretize the action space as specified at the end of Subsection

3.1. The other is to analyze the infinite game directly. To do so, observe that the proof of

Si (ti) ⊂ S∗
i (ti) in Proposition 3 and also the proof of Corollaries 1 and 2 do not depend on

the finiteness assumption of Ai. Thus, it follows from Proposition 1 and Corollary 2 that

(a) if θH/θL > (|I| − 1)/2, we can select every q ∈ [0, θH/2] for every type ti, whereas (b)

if θH/θL ≤ (|I| − 1)/2, no type has a uniquely rationalizable action. Therefore, the sharp

discontinuity between the two cases also applies to the WY selection and the structure

theorem.

Note that for θH/θL > (|I| − 1)/2, this structure theorem without discretization is

slightly different from WY’s original one that requires the openness of the set of types

for which a given action is uniquely rationalizable (Weinstein and Yildiz, 2007b, p. 372).

Indeed, when the action set is infinite, even though the ICR correspondence remains to be

upper hemicontinuous (Weinstein and Yildiz, 2012, Proposition 3), {ti ∈ T∗
i : |ICRi(ti)| =

1} need not be open. Nonetheless, {ti ∈ T∗
i : |ICRi(ti)| = 1} is still a countable inter-

section of {ti ∈ T∗
i : diameter of ICRi(ti) < 1/n}, each of which is open (because ICR (·)

is upper hemicontinuous) and dense (because every q ∈ [0, θH/2] can be selected for

every type ti). Therefore, the generic uniqueness holds in a slightly weaker sense, i.e.,

{ti ∈ T∗
i : |ICRi(ti)| = 1} is a residual set in T∗

i .

4.5.2 The Auction Example Revisited

Recall the auction example in Subsection 3.2. It is straightforward to verify that {0} ∈
R↑,1

i , and inductively, for any 1 ≤ n ≤ 10, {k} ∈ R↑,n
i for k = 0, . . . , n − 1. Moreover,

{10} /∈ R↑,n
i , since 0 is also a best reply whenever 10 is a best reply. It then follows from

Proposition 2 that Ru
i = {0, 1, . . . , 9}.
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We can also verify that {10} ∈ R↓,n
i by considering the belief that all bidders have

values 10 and bid 10. Thus, {10} ∈ R↓,n
i and 10 /∈ Ru

i . It follows from Corollary 2 that the

structure theorem does not hold in this example. Next, for any Ri ∈ R↑
i , if 10 ∈ Ri, we

also have 0 ∈ Ri. Thus, Ri ∩ Ru
i ̸= ∅ for every Ri ∈ R↑

i . It follows from Corollary 3 that

the generic uniqueness holds in this example.

Finally, recall that {0, 1, . . . , 9} is a weakly robust prediction for the type τi,10 with

complete information that all bidders have values 10. We now show that {9} is the

sharpest weakly robust prediction for τi,10 and hence {9} is a strongly robust prediction,

which is in contrast with ICRi (τi,10) = {0, 1, . . . , 10}. To see this, we show that {9} is the

only minimal (i.e., smallest) set in Si (τi,10).

We show first that 0 does not belong to any minimal set in S1
i (τi,10). Indeed, since

Ru
i = {0, 1, . . . , 9}, the minimal sets in R↑

i are {0} , {1} , . . . , {9}. Thus, to determine the

minimal sets in S1
i (τi,10), it is without loss of generality to consider beliefs that concen-

trates on {0} , {1} , . . . , {9}. In this case, 0 is never a best reply against any belief. Indeed,

if a belief assigns a positive probability that all the opponents bid 0, then bidding 1 is

strictly better than bidding 0 (since 10/ |I| < 9); if a belief assigns probability zero that

all the opponents bid 0, then bidding 9 to win with a positive probability is strictly better

than bidding 0. Hence, 0 does not belong to any minimal set in S1
i (τi,10). Moreover, each

{b} with b ∈ {1, . . . , 9} is a minimal set in S1
i (τi,10) since b is the unique best reply against

a belief concentrating on b − 1 (since 0 < (10 − b) / |I| < 10 − b − 1).

Inductively, we can show that for any n, b ≤ min(n − 1, 8) (as well as b = 10) does

not belong to any minimal set in Sn
i (τi,10). Finally, since bidding 9 is a strict best reply

against a belief concentrating on {9}, we have {9} ∈ Sn
i (τi,10) for every n. Therefore, {9}

is the only minimal set in Si (τi,10).

5 Infinite Types

In this section, we extend our characterizations of the WY selection and robust predictions

to infinite types. The key to such an extension is a measurability requirement. To see this,
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suppose instead that we adopt the same definition of Sn
i (ti) as in (6) for finite types. Since

Sn
i (ti) is specified on a type-by-type basis, we may not be able to find (µi, µ′

i) that depends

on (ti, Ri) measurably, which is an indispensable step in the proof of Proposition 3. To

circumvent this problem, we introduce a fixed-point counterpart of Sn
i (ti) that already

incorporates the measurability of (µi, µ′
i) as a part of definition.

Formally, fix any (possibly infinite) model (T, κ). A profile
(
S̃i

)
i∈I

of measurable

mappings S̃i : Ti → 2R
↑
i \ {∅} is called an R↑-perturbed curb collection on (T, κ) if for

every i ∈ I and ε ∈ (0, 1], there exists a measurable mapping

(µ, µ′) : Ti ×R↑
i → ∆

(
Θ × T−i ×R↑

−i

)
× ∆

(
Θ ×R↑

−i

)
such that for each ti ∈ Ti and Ri ∈ S̃i(ti),

(i) margΘ×T−i
µti,Ri

= κti ;

(ii) µti,Ri

[{
(θ, t−i, R−i) : R−i ∈ S̃i−i (t−i)

}]
= 1;

(iii) Ri ⊃
∪
(πi,π′

i)∈Π
µti ,Ri
i ×Π

µ′ti ,Ri
i

BRi
(
(1 − ε)πi + επ′

i
)
,

where Π
µti ,Ri
i and Π

µ′
ti ,Ri

i are the sets of πi satisfying (2)-(3) and (4)-(5), respectively, with

the additional measurability requirement on φi. Note that R↑-perturbed curb collections

are defined on each model (T, κ), which may be infinite, but much smaller than the uni-

versal model (T∗, κ∗).

The following is a generalization of Proposition 3 to infinite types. The proof is in

Appendix A.4.

Proposition 4 For any model (T, κ),
(
S∗

i |Ti

)
i∈I is the largest R↑-perturbed curb collection on

(T, κ).

By Proposition 4, we can characterize the WY selection and robust predictions in

terms of R↑-perturbed curb collections.
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Theorem 3 Fix a model (T, κ). Action ai can be selected for type ti ∈ Ti if and only if {ai} ∈
S̃i (ti) for some R↑-perturbed curb collection

(
S̃j

)
j∈I

on (T, κ).

Theorem 4 Fix a model (T, κ). Prediction Pi is weakly (resp. strongly) robust for type ti ∈ Ti if

and only if Pi ∩ Ri ̸= ∅ (resp. Pi ⊂ Ri) for any R↑-perturbed curb collection
(
S̃j

)
j∈I

on (T, κ)

and any Ri ∈ S̃i (ti).

6 Conclusion

In this paper, without imposing any structure on payoffs, we have characterized the WY

selection and weakly/strongly robust predictions for any finite type. It is worth noting

that we achieve the characterization by utilizing a novel approach, namely the collection-

based approach first proposed in Chen, Takahashi, and Xiong (forthcoming). More pre-

cisely, we study collections of subsets of actions and their best reply property, compared

to the previous literature that primarily focuses on the best reply property of subsets of

actions. We believe that this collection-based approach is useful in investigating other

related questions as well.

A Appendix

A.1 Proof of Proposition 1

Proof of Proposition 1 (a) The “only if” direction is obvious. To show the “if” direction,

let r = (|I| − 1)/2 ≥ 1 and x = (θH − rθL)/2 > 0.
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Claim 1 For any m ≥ 1, there exist τi,m,L, τi,m,H ∈ T∗
i such that

ICRi(τi,1,L) ⊂
[

0,
θL

2

]
,

ICRi(τi,m,L) ⊂
[

0, max
(

0,
θL

2
− (r + r3 + · · ·+ r2m−3)x

)]
, ∀m ≥ 2

ICRi(τi,m,H) ⊂
[

min
(

θH

2
, (1 + r2 + · · ·+ r2m−2)x

)
,

θH

2

]
, ∀m ≥ 1.

Proof of Claim 1 We construct desired types inductively. For m = 1, we can take type

τi,1,L to be any type whose first-order belief puts probability 1 on θ = θL. Then we have

ICRi(τi,1,L) ⊂ [0, θL/2].

For any m ≥ 1, we take type τi,m,H to be the type who puts probability 1 on θ = θH

and tj = τ j,m,L for any j ̸= i. By (1) and the induction hypothesis, any action that is

rationalizable for τi,m,H is bounded from below by

1
2

(
θH − (|I| − 1)max

(
0,

θL

2
− (r + r3 + · · ·+ r2m−3)x

))
= min

(
θH

2
, (1 + r2 + · · ·+ r2m−2)x

)
.

Thus we have ICRi(τi,m,H) ⊂
[
min

(
θH/2, (1 + r2 + · · ·+ r2m−2)x

)
, θH/2

]
.

Similarly, for any m ≥ 2, we take type τi,m,L to be the type who puts probability 1

on θ = θL and tj = τ j,m−1,H for any j ̸= i. By (1) and the induction hypothesis, any action

that is rationalizable for τi,m,L is bounded from above by

max
(

0,
1
2

(
θL − (|I| − 1)min

(
θH

2
, (1 + r2 + · · ·+ r2m−4)x

)))
= max

(
0,

θL

2
− (r + r3 + · · ·+ r2m−3)x

)
.

Thus we have ICRi(τi,m,L) ⊂
[
0, max

(
0, θL/2 − (r + r3 + · · ·+ r2m−3)x

)]
.

Claim 2 For any n ≥ 0 and any

q ∈
[

0, min
(

θH

2
, (1 + r2 + · · ·+ r2n)x

)]
∪
[

max
(

0,
θL

2
− (r + r3 + · · ·+ r2n+1)x

)
,

θH

2

]
,

there exists τi,q ∈ T∗
i such that ICRi(τi,q) = {q}.
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Proof of Claim 2 We construct desired types inductively. For n = 0, we take τi,0 = τi,m,L

in Claim 1 with sufficiently large m. Then we have ICRi(τi,0) = {0}.

Also, for n = 0 and any q ∈ [θL/2, θH/2], we take τi,q to be the type who puts

probability (2q − θL)/(θH − θL) on θ = θH and tj = τ j,0 for any j ̸= i, and probability

(θH − 2q)/(θH − θL) on θ = θL and tj = τ j,0 for any j ̸= i. By (1), we have ICRi(τi,q) =

{q}.

For any n ≥ 1 and any q ∈ [0, min
(
θH/2, (1 + r2 + · · ·+ r2n)x

)
], let q′ = (θH −

2q)/(|I| − 1). Since

q′ ∈
[

θH − 2 min
(
θH/2, (1 + r2 + · · ·+ r2n)x

)
|I| − 1

,
θH

|I| − 1

]

⊂
[

max
(

0,
θL

2
− (r + r3 + · · ·+ r2n+1)x

)
,

θH

2

]
by the induction hypothesis, there exists τ j,q′ ∈ T∗

i such that ICRi(τi,q′) = {q′}. We take

τi,q to be the type who puts probability 1 on θ = θH and tj = τ j,q′ for any j ̸= i. By (1), we

have ICRi(τi,q) = {q}.

Similarly, for any n ≥ 1 and any q ∈ [max
(
0, θL/2 − (r + r3 + · · ·+ r2n+1)x

)
, θH/2],

if q ≥ θL/2, then the desired τi,q is already constructed in the case of n = 0. If q < θL/2,

then let q′′ = (θL − 2q)/(|I| − 1). Since

q′′ ∈
(

0,
θL − 2 max

(
0, θL/2 − (r + r3 + · · ·+ r2n+1)x

)
|I| − 1

]

⊂
[

0, min
(

θH

2
, (1 + r2 + · · ·+ r2n)x

)]
by the induction hypothesis, there exists τ j,q′′ ∈ T∗

i such that ICRi(τi,q′′) = {q′′}. We take

τi,q to be the type who puts probability 1 on θ = θL and tj = τ j,q′′ for any j ̸= i. By (1), we

have ICRi(τi,q) = {q}.

By taking n → ∞ in Claim 2, we can construct τi,q ∈ T∗
i for any q ∈ [0, θH/2].

(b) For each ti ∈ T∗
i , we have ICR1

i (ti) =
[
0, Et1

i
(θ)/2

]
. For each ti ∈ T∗

i and

q ∈
[
0, Et1

i
(θ)/2

]
, let q(ti) =

(
Et1

i
(θ)− 2q

)
/(|I| − 1). Then q is a best response to the
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conjecture νi such that margΘ×T∗
−i

νi = κ∗ti
and νi [a−i = q(ti)] = 1. Also,

q(ti) ∈
[

0,
Et1

i
(θ)

|I| − 1

]
⊂
[

0,
θH

|I| − 1

]
⊂
[

0,
θL

2

]
⊂
[

0,
Et1

i
(θ)

2

]

for any t−i ∈ T∗
i

. Thus we have ICRi(ti) =
[
0, Et1

i
(θ)/2

]
.

A.2 Proof of Proposition 2

We first prove the following lemma.

Lemma 2 For any n ≥ 0, we have (a) R↑,n
i = {Ri ∈ Ai : ∃ti ∈ T∗

i s.t. Ri ⊃ ICRn
i (ti)}; (b)

R↓,n
i = {Ri ∈ Ai : ∃ti ∈ T∗

i s.t. Ri ⊂ ICRn
i (ti)}.

Proof The proof of (b) is similar to the proof of (a) and thus omitted. We prove (a) by

induction. The case for n = 0 is obvious. Suppose that the claim holds for n − 1 and we

prove the case for n.

For “⊃”, suppose that Ri ⊃ ICRn
i (ti) for some ti ∈ T∗

i . Define µi ∈ ∆(Θ ×A−i) such

that

µi [θ, R−i] = κ∗ti

[{
(θ, t−i) : ICRn−1

−i (t−i) = R−i

}]
(9)

for every (θ, R−i) ∈ Θ ×A−i.19 By the induction hypothesis, µi ∈ ∆
(

Θ ×R↑,n−1
−i

)
. We

prove that Ri ⊃ BRi(πi) for every πi ∈ Πµi
i to conclude Ri ∈ R↑,n

i . Pick any πi ∈ Πµi
i .

Then there exists a function φi : Θ × A−i → ∆(A−i) such that (2) and (3) hold. Define

νi ∈ ∆
(
Θ × T∗

−i × A−i
)

such that

νi [{θ} × E−i × {a−i}] (10)

= ∑
R−i∈A−i

κ∗ti

[{
(θ, t−i) : t−i ∈ E−i and ICRn−1

−i (t−i) = R−i

}]
φi(θ, R−i)[a−i]

19By Dekel, Fudenberg, and Morris (2007, Lemma 1), ICRn−1
j (·) is upper hemicontinuous when T∗

j is

endowed with the product topology. Thus,
{
(θ, t−i) : ICRn−1

−i (t−i) = R−i

}
is measurable.
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for every measurable E−i ⊂ T∗
−i and (θ, a−i) ∈ Θ× A−i. It then follows that margΘ×T−i

νi =

κ∗ti
; νi

[
a−i ∈ ICRn−1

−i (t−i)
]
= 1 by (2); margΘ×A−i

νi = πi because

margΘ×A−i
νi[θ, a−i] = ∑

R−i∈A−i

κ∗ti

[{
(θ, t−i) : ICRn−1

−i (t−i) = R−i

}]
φi(θ, R−i)[a−i]

= ∑
R−i∈A−i

µi [θ, R−i] φi(θ, R−i)[a−i]

= πi[θ, a−i]

for every (θ, a−i) ∈ Θ × A−i, where the three equalities follow from (10), (9), and (3),

respectively. Thus, we have Ri ⊃ ICRn
i (ti) ⊃ BRi(πi).

For “⊂”, suppose that Ri ∈ R↑,n
i . Then, there exists µi ∈ ∆(Θ ×R↑,n−1

−i ) such that

Ri ⊃ BRi(πi) for every πi ∈ Πµi
i . By the induction hypothesis, for every R−i ∈ R↑,n−1

−i ,

there exists τ−i,R−i ∈ T∗
−i such that R−i ⊃ ICRn−1

−i
(
τ−i,R−i

)
. Define ti ∈ T∗

i with κ∗ti
having

a finite support such that

κ∗ti
[θ, t−i] = µi

[{
(θ, R−i) : τ−i,R−i = t−i

}]
.

We now show Ri ⊃ ICRn
i (ti). Pick any conjecture νi ∈ ∆

(
Θ × T∗

−i × A−i
)

such that

margΘ×T∗
−i

νi = κ∗ti
and νi

[
a−i ∈ ICRn−1

−i (t−i)
]
= 1. Let πi = margΘ×A−i

νi. Define φi as

the conditional probability of νi on each
(
θ, τ−i,R−i

)
, i.e., φi (θ, R−i) [a−i] = νi

[
a−i | θ, τ−i,R−i

]
.

(If κ∗ti

[
θ, τ−i,R−i

]
= 0, then pick φi(θ, R−i) ∈ ∆(R−i) arbitrarily.) Then, (2) holds because

νi

[
a−i ∈ ICRn−1

−i (t−i)
]
= 1 and R−i ⊃ ICRn−1

−i
(
τ−i,R−i

)
for every R−i ∈ R↑,n−1

−i ; (3) holds

because

πi[θ, a−i] = margΘ×A−i
νi[θ, a−i]

= ∑
t−i∈T∗

−i

κ∗ti
[θ, t−i]νi [a−i | θ, t−i]

= ∑
t−i∈T∗

−i

∑
R−i∈A−i :τ−i,R−i

=t−i

µi[θ, R−i]φ(θ, R−i)[a−i]

= ∑
R−i∈A−i

µi[θ, R−i]φ(θ, R−i)[a−i]

for every (θ, a−i) ∈ Θ× A−i. Thus, we have πi ∈ Πµi
i , and hence Ri ⊃ BRi(πi). Therefore,

we have Ri ⊃ ICRn
i (ti).

We now turn to prove Proposition 2.
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Proof of Proposition 2 (a) For “⊂”, suppose that Ri ∈ R↑,n
i for some n. By Lemma 2(a),

there exists ti ∈ T∗
i such that Ri ⊃ ICRn

i (ti). Since Ri ⊃ ICRn
i (ti) ⊃ ICRi (ti), we have

Ri ∈ R↑
i .

For “⊃”, suppose that Ri ∈ R↑
i . Then there exist ti ∈ T∗

i and m such that Ri ⊃
ICRi (ti) = ICRm

i (ti). By Lemma 2(a), we have Ri ∈ R↑,m
i ⊂ R↑,n

i for any n ≥ ∑i 2|Ai| −
2 |I|.

(b) For “⊂”, suppose that Ri ∈ R↓,n
i for some n ≥ ∑i 2|Ai| − 2 |I|. For each m, since

Ri ∈ R↓,n
i ⊂ R↓,m

i , by Lemma 2(b), there exists ti,m ∈ T∗
i such that Ri ⊂ ICRm

i (ti,m). Since

T∗
i is a compact metric space, {ti,m} admits a convergent subsequence

{
ti,mk

}
. We denote

its limit by ti. For any m and mk ≥ m, we have Ri ⊂ ICRmk
i
(
ti,mk

)
⊂ ICRm

i
(
ti,mk

)
. Since

ti,mk → ti as k → ∞ and ICRm
i (·) is upper hemicontinuous, we have Ri ⊂ ICRm

i (ti). Since

m is arbitrary, we have Ri ⊂ ICRi(ti), and hence Ri ∈ R↓
i .

For “⊃”, suppose that Ri ∈ R↓
i . Then there exists ti ∈ T∗

i such that Ri ⊂ ICRi(ti) ⊂
ICRn

i (ti) for any n. By Lemma 2(b), we have Ri ∈ R↓,n
i .

A.3 Proof of Proposition 3

We prove Proposition 3 in the following two lemmas.

Lemma 3 Si (ti) ⊂ S∗
i (ti) for finite type ti.

Proof Define S∗,0
i (ti) := R↑

i and

S∗,n
i (ti) :=

{
Ri ∈ Ai : ∃{ti,m}∞

m=0 ⊂ T∗
i s.t. tn

i,m → tn
i as m → ∞ and Ri ⊃ ICRi (ti,m) , ∀m

}
for each n ≥ 1. We show that Si (ti) ⊂ S∗,n

i (ti), and thus Si (ti) ⊂ S∗
i (ti) by taking a

diagonal sequence. We fix a finite model (T, κ), and prove by induction that Si (ti) ⊂
S∗,n

i (ti). For n = 0, we have Si (ti) ⊂ R↑
i = S∗,0

i (ti). Suppose that Si (ti) ⊂ S∗,n−1
i (ti)

for any i ∈ I and ti ∈ Ti, and we prove Si (ti) ⊂ S∗,n
i (ti) for any i ∈ I and ti ∈ Ti. Let

i ∈ I, ti ∈ Ti, and Ri ∈ Si (ti). By the fixed-point property of Si (·), for each m, there exists

(µi,m, µ′
i,m) ∈ ∆

(
Θ × T−i ×R↑

−i

)
× ∆

(
Θ ×R↑

−i

)
such that (i)-(iii) in (7) with ε = 1

m+1
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holds. First, for each R−i ∈ R↑, there exists τ−i,R−i ∈ T∗
−i such that R−i ⊃ ICR−i

(
τ−i,R−i

)
.

Also, for each t−i ∈ T−i and R−i ∈ S−i (t−i), by the induction hypothesis, there is some

sequence of types
{

τt−i,R−i,m
}∞

m=0 ⊂ T∗
−i such that τn−1

t−i,R−i,m
→ tn−1

−i as m → ∞ and R−i ⊃
ICR−i

(
τt−i,R−i,m

)
for every m. (If n = 1, we set τt−i,R−i,m = τ−i,R−i .) Define ti,m ∈ T∗

i with

κ∗ti,m
having a finite support such that

κ∗ti,m
[θ, s−i] =

m
m + 1

µi,m
[{

(θ, t−i, R−i) : τt−i,R−i,m = s−i
}]

+
1

m + 1
µ′

i,m
[{

(θ, R−i) : τ−i,R−i = s−i
}]

(11)

for every (θ, s−i) ∈ Θ × T∗
−i. Since τn−1

t−i,R−i,m
→ tn−1

−i as m → ∞ and margΘ×T−i
µi,m = κti

for every m, it follows that tn
i,m → tn

i as m → ∞.

Finally, we show that Ri ⊃ ICRi (ti,m) for every m. Pick any ai ∈ ICRi (ti,m) and we

show ai ∈ Ri. Since ai ∈ ICRi (ti,m), by (1), there is a valid conjecture νi,m ∈ ∆
(
Θ × T∗

−i × A−i
)

for ti,m such that ai ∈ BRi

(
margΘ×A−i

νi,m

)
. Fix αi ∈ ∆(Ai \ {ai}). For each (θ, R−i) ∈

Θ ×R↑
−i, let ψ

αi
−i(θ, R−i) ∈ R−i be one of the action profiles of player i’s opponents that

favor action ai most relative to αi, i.e.,

ψ
αi
−i(θ, R−i) ∈ arg max

a−i∈R−i

[ui(θ, ai, a−i)− ui(θ, αi, a−i)] . (12)

Since margΘ×T∗
−i

νi,m = κ∗ti,m
, νi,m [a−i ∈ ICR−i (t−i)] = 1, and ai ∈ BRi

(
margΘ×A−i

νi,m

)
,

it follows that ai is no worse than αi against π∗
i,m, where

π∗
i,m [θ, a−i] = κ∗ti,m

[{
(θ, s−i) : ψ

αi
−i(θ, ICR−i(s−i)) = a−i

}]
(13)

for every (θ, a−i) ∈ Θ × A−i. Let

πi,m [θ, a−i] = µi,m
[{

(θ, t−i, R−i) : ψ
αi
−i(θ, ICR−i(τt−i,R−i,m)) = a−i

}]
, (14)

π′
i,m [θ, a−i] = µ′

i,m
[{

(θ, R−i) : ψ
αi
−i(θ, ICR−i(τ−i,R−i)) = a−i

}]
(15)

for every (θ, a−i) ∈ Θ × A−i. Observe that (πi,m, π′
i,m) ∈ Π

µi,m
i × Π

µ′
i,m

i . Moreover,

π∗
i,m [θ, a−i] = κ∗ti,m

[{
(θ, s−i) : ψ

αi
−i(θ, ICR−i(s−i)) = a−i

}]
=

m
m + 1

µi,m
[{

(θ, t−i, R−i) : ψ
αi
−i(θ, ICR−i(τt−i,R−i,m)) = a−i

}]
+

1
m + 1

µ′
i,m
[{

(θ, R−i) : ψ
αi
−i(θ, ICR−i(τ−i,R−i)) = a−i

}]
=

m
m + 1

πi,m [θ, a−i] +
1

m + 1
π′

i,m [θ, a−i] .
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where the first equality follows from (13); the second follows from (11); the third follows

from (14) and (15). Therefore, for each αi ∈ ∆(Ai \ {ai}), ai is no worse than αi against
m

m+1 πi,m + 1
m+1 π′

i,m. By the usual duality argument, ai ∈ BRi

(
m

m+1 π̂i,m + 1
m+1 π̂′

i,m

)
for

some (π̂i,m, π̂′
i,m) ∈ Π

µi,m
i × Π

µ′
i,m

i . It then follows from (iii) in (7) that ai ∈ Ri.

Lemma 4 S∗
i (ti) ⊂ Si (ti) for finite type ti.

Proof We fix a finite model (T, κ). We assume without loss of generality that (T, κ) is

embedded in the universal type space (T∗, κ∗). We prove the claim by showing that for

each i ∈ I, ti ∈ Ti, Ri ∈ S∗
i (ti), and ε ∈ (0, 1], there exists (µi, µ′

i) ∈ ∆
(

Θ × T−i ×R↑
−i

)
×

∆
(

Θ ×R↑
−i

)
such that

(i) margΘ×T−i
µi = κti ;

(ii) µi
[{

(θ, t−i, R−i) : R−i ∈ S∗
−i (t−i)

}]
= 1;

(iii) Ri ⊃
∪
(πi,π′

i)∈Π
µi
i ×Π

µ′i
i

BRi
(
(1 − ε)πi + επ′

i
)
.

Consequently, by (7), we have S∗
i (ti) ⊂ Si (ti).

First, since Ri ∈ S∗
i (ti), there exist {ti,m}∞

m=0 ⊂ T∗
i such that ti,m → ti and Ri ⊃

ICRi (ti,m) for every m. For each m, we define µi,m ∈ ∆
(

Θ × T∗
−i ×R↑

−i

)
by

µi,m [{θ} × E−i × {R−i}] = κ∗ti,m
[{(θ, s−i) : s−i ∈ E−i and ICR−i (s−i) = R−i}] (16)

for every measurable E−i ⊂ T∗
−i and (θ, R−i) ∈ Θ × R↑

−i. Since ∆
(

Θ × T∗
−i ×R↑

−i

)
is

a weak∗ compact metric space, {µi,m}∞
m=0 admits a convergent subsequence {µi,mk

}∞
k=0.

We denote its limit by µi. Second, we show that µi satisfies (i) and (ii). By the definition

of µi,m, we know that margΘ×T∗
−i

µi,m = κti,m . Since µi,mk
→ µi as k → ∞ and ti,m → ti

as m → ∞, it follows that margΘ×T∗
−i

µi = κti , i.e., (i) holds. In particular, we have µi ∈

∆
(

Θ × T−i ×R↑
−i

)
.
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To prove (ii), for each ℓ ∈ N, let

Fℓ = cl
{
(θ, s−i, R−i) : ∃s′−i ∈ T∗

−i s.t. d−i(s′−i, s−i) ≤
1
ℓ

and ICR−i
(
s′−i
)
= R−i

}
,

F∞ = (Θ × T−i ×R↑
−i) ∩

∩
ℓ∈N

Fℓ,

where d−i is the metric on T∗
−i. Note that

Fℓ ⊃ {(θ, t−i, R−i) : ICR−i (t−i) = R−i} , ∀ℓ, (17)

F∞ ⊂
{
(θ, t−i, R−i) : t−i ∈ T−i and R−i ∈ S∗

−i(t−i)
}

. (18)

Hence, (16) and (17) imply that µi,m[Fℓ] ≥ µi,m [ICR−i (t−i) = R−i] = 1, i.e., µi,m[Fℓ] = 1 for

all ℓ. Since Fℓ is closed and µi,mk
→ µi as k → ∞, we have µi[Fℓ] = 1 for all ℓ. As a result,

µi[
∩
ℓ∈N Fℓ] = 1. Combining this with µi

[
Θ × T−i ×R↑

−i

]
= 1, we have µi [F∞] = 1,

which, together with (18), implies (ii).

Finally, we prove (iii). First, let

µ′
i,m =

1
ε

(
margΘ×R↑

−i
µi,m − (1 − ε)margΘ×R↑

−i
µi

)
. (19)

Since µi,mk
→ µi, pick k sufficiently large so that µ′

i,mk
[θ, R−i] ≥ 0 for every (θ, R−i) ∈ Θ ×

R↑
−i, and hence µ′

i,mk
∈ ∆

(
Θ ×R↑

−i

)
. Now fix any ai ∈ Ai such that ai ∈ BRi

(
(1 − ε)πi + επ′

i
)

for some (πi, π′
i) ∈ Πµi

i × Π
µ′

i,mk
i , and we show ai ∈ Ri. Fix αi ∈ ∆(Ai \ {ai}). For each

(θ, R−i) ∈ Θ ×R↑
−i, define ψ

αi
−i(θ, R−i) as in (12). Then since ai ∈ BRi

(
(1 − ε)πi + επ′

i
)

for some (πi, π′
i) ∈ Πµi

i × Π
µ′

i,mk
i , it follows that∫

Θ×R↑
−i

[ui(θ, ai, ψ
αi
−i(θ, R−i))−ui(θ, αi, ψ

αi
−i(θ, R−i))]d

(
(1 − ε)margΘ×R↑

−i
µi + εµ′

i,mk

)
≥ 0.

(20)

Let νi,mk ∈ ∆
(
Θ × T∗

−i × A−i
)

be such that

νi,mk [{θ} × E−i × {a−i}] = κ∗ti,mk

[{
(θ, t−i) : t−i ∈ E−i and ψ

αi
i (θ, ICR−i(t−i)) = a−i

}]
(21)
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for every measurable E−i ⊂ T∗
−i and (θ, a−i) ∈ Θ × A−i. Since ψ

αi
i (θ, ICR−i(t−i)) ∈

ICR−i(t−i), νi,mk is a valid conjecture. We then have∫
Θ×T∗

−i×A−i

[ui(θ, ai, a−i)− ui(θ, αi, a−i)]dνi,mk

=
∫

Θ×T∗
−i

[ui(θ, ai, ψ
αi
−i(θ, ICR−i(t−i)))− ui(θ, αi, ψ

αi
−i(θ, ICR−i(t−i)))]dκ∗ti,mk

=
∫

Θ×T∗
−i×R↑

−i

[ui(θ, ai, ψ
αi
−i(θ, R−i))− ui(θ, αi, ψ

αi
−i(θ, R−i))]dµi,mk

=
∫

Θ×R↑
−i

[ui(θ, ai, ψ
αi
−i(θ, R−i))− ui(θ, αi, ψ

αi
−i(θ, R−i))]d

(
(1 − ε)margΘ×R↑

−i
µi + εµ′

i,mk

)

≥ 0,

where the three equalities follow from (21), (16), and (19), respectively, and the inequality

follows from (20). Therefore, for each αi ∈ ∆(Ai \ {ai}), there exists a valid conjecture

νi,mk for ti,mk against which ai is no worse than αi. Then it follows from the usual duality

argument that we can find a valid conjecture for ti,mk , independent of αi, against which ai

is a best reply. By (1), we have ai ∈ ICRi
(
ti,mk

)
⊂ Ri.

A.4 Proof of Proposition 4

First, suppose that
(
S̃i

)
i∈I

is an R↑-perturbed curb collection. Then, the fact that S̃i(ti) ⊂

S∗
i (ti) follows from the proof of Lemma 3 in Appendix A.3 by noting that

(
S̃i

)
i∈I

satisfies

the same fixed-point property as (Si)i∈I in (7); moreover, the measurability of τt−i,R−i,m

on T∗
−i is ensured by the measurability of µtj,Ri

on tj for every j.

Second, the fact that
(
S∗

i |Ti

)
i∈I is an R↑-perturbed curb collection follows from the

proof of Lemma 4 in Appendix A.3 by adding the following step to ensure the measur-

ability of µ: For each ti ∈ Ti and each Ri ∈ S∗
i (ti), let ∆ti,Ri be the set of weak∗ lim-

its of all µti,m
∈ ∆

(
Θ × T∗

−i ×A−i
)

such that {ti,m} → ti and S∞
i (ti,m) = Ri for all m,

where µti,m
is defined as µi,m in (16). By the compactness of ∆(Θ × T∗

−i ×A−i), we have

∆ti,Ri ̸= ∅. Also ∆ti,Ri depends on (ti, Ri) upper hemicontinuously. Thus, it follows from
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the Kuratowski–Ryll-Nardzewski selection theorem that we have a measurable function

µ : Ti ×Ai → ∆
(

Θ × T−i ×R↑
−i

)
such that µti,Ri

∈ ∆ti,Ri whenever Ri ∈ S∗
i (ti).
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