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ABSTRACT: We propose a new simple procedure called Population-Mean-Based Ag-
gregation (PMBA) that enables a principal to “aggregate” information about an
unknown state of the world from agents without understanding the information
structure among them. PMBA only requires agents to communicate their beliefs
about the state, and some agents to communicate their expectations of the popula-
tion average belief. In a large population, for any finite number of possible states,
and under weak assumptions on the information structure, including individual
agents’ beliefs being possibly misspecified, we show that PMBA always infers the
true state. We provide evidence that our procedure performs well on the experi-
mental data of Prelec, Seung, and McCoy (2017).
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1. INTRODUCTION

A long-held belief, starting from at least Aristotle, is that of the “wisdom of the crowd.”
This refers to the idea that even though some event may be uncertain, and the informa-
tion each individual has may be noisy, the “aggregate” of individual beliefs is accurate.
Such aggregation obviously has large social and private value, especially when it con-
cerns important social or economic events. As a consequence, there has been substantial
effort toward both improving existing institutions (e.g., polling), and designing and im-
plementing new methods (e.g., prediction markets).1 At a theoretical level, then, it is
important to understand the limits of such an exercise: without specific assumptions on
the nature of the information agents have, how can we aggregate it, and how much can
we learn from it? In short, how wise is the crowd, and how can we tap into its wisdom?

To fix ideas, imagine a population of interest and an event whose realization is uncer-
tain. Individual agents each see a signal that is informative of the realization. Agents
also understand the informational environment, i.e., what this signal implies for their
own beliefs and the implied distribution of other agents’ beliefs. Even assuming away
the difficulties (both logistical and strategic) of eliciting the relevant information from the
population, the question we address in this paper is: Does there exist a general procedure
to aggregate individuals’ information without knowledge of the information structure
among them?

One important insight from the existing literature is that even if the state is binary, and
agents’ signals are i.i.d. conditional on the state, knowing the first-order beliefs of even an
infinite set of agents is generally insufficient to learn the state.2 In particular, even in these
idealized conditions, most agents may be wrong, i.e., most agents may place a posterior
probability of larger than 50% on the incorrect state of the world. The main takeaway from
Arieli, Babichenko, and Smorodinsky (2017) is that without further strong assumptions
about the signal structure, the principal cannot learn the state of the world, even with an
infinite number of agents in the population. In the terminology of econometrics, there is
an “identification problem.”

We answer this question by means of a simple procedure we name Population-Mean-
Based Aggregation (herein PMBA). Our procedure uses agents’ beliefs about the uncertain
event as well as some agents’ expectation of the average of others’ beliefs. Under weak
conditions on the information structure generating the agents’ signals, this procedure
1There is also a large and influential body of literature studies the possibility of such aggregation within
our current institutions, e.g., voting (see e.g., Austen-Smith and Banks (1996), Feddersen and Pesendorfer
(1997)), markets (e.g., Grossman and Stiglitz (1980)) and social networks (see e.g., Golub and Jackson (2010),
Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)).
2See Prelec, Seung, and McCoy (2017) and Arieli, Babichenko, and Smorodinsky (2017).
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fully aggregates the information among agents in a large population. In other words, us-
ing information from agents, solely about agents’ own beliefs, and their expectation of
the average belief in the population (herein referred to as population average belief), but
with no other knowledge of the underlying information structure, we can fully learn the
underlying state. Importantly, we show that our procedure is robust: it allows for aggre-
gation of beliefs even when beliefs are misspecified at both the individual and aggregate
levels. That is to say, we start from a “correctly specified” model where agents have be-
liefs and higher-order beliefs from a common prior and show that our PMBA procedure
correctly aggregates agents’ information without knowledge of the underlying common
prior. We then show that this procedure continues to correctly aggregate even if individ-
ual beliefs are arbitrarily misspecified, as long as in aggregate, the misspecification is not
too large, in a sense that we make precise in what follows. As a result, our procedure is a
viable candidate to be used in practice.

The idea of eliciting and using higher-order beliefs is not new: In our context, we note
the elegant “Surprisingly Popular” (herein, SP) procedure developed by Prelec, Seung,
and McCoy (2017) (henceforth PSM), who pioneered the use of second-order beliefs for
the purpose of information aggregation (however their procedure aggregates information
on a narrow set of information structures—we discuss this in more detail in Section 3.1).
Another close comparison is to the Surprisingly Confident (SC) procedure of Wilkening,
Martinie, and Howe (2021), who also leverage the linearity of the correspondence be-
tween beliefs and higher-order beliefs, and its implication for the ordering of average
beliefs and average second-order beliefs in each state (see also Theorem 1.4 of Prelec, Se-
ung, and McCoy (2017) and contemporaneous approaches by Libgober (2021) and Prelec
and McCoy (2022), described in Section 6). A key differentiator is that SP/SC are both
only guaranteed to work under binary states, i.e., two possible states of the world, and
require stronger assumptions more generally, as we discuss below.

In line with this literature, it is important to note that we are solely using agents’ be-
liefs and expected higher-order beliefs. Such information has been robustly elicited in
laboratory and real-world settings, and therefore, our procedure is amenable to imple-
mentation. We show in Section 3 that our procedure performs well on the experimental
data of Prelec, Seung, and McCoy (2017). By contrast, theoretically feasible procedures
that ask agents for more detailed information such as state-contingent beliefs (for exam-
ple, the agent’s expectation of the average belief in the population conditional on the true
state of the world) may not be reliable or even feasible in practice. There is a wealth of
evidence that agents struggle to report richer details (such as state-contingent beliefs).3

3For example, in Li (2017), he states: “More generally, laboratory subjects find it difficult to reason state-
by-state about hypothetical scenarios (Charness and Levin, 2009; Esponda and Vespa, 2014; Ngangoué and
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Similarly, we may not be able to elicit the underlying prior, i.e., we take seriously the idea
that the prior/ ex-ante stage is an “as-if” assumption.4

1.1. Summary of Model and Results

Our baseline model, detailed in Section 2, considers general environments with a finite
number of states of the world and many agents. We suppose that agents observe sig-
nals according to an information structure that is unknown to the principal but understood
among the agents themselves. Theorems 1 and 2 show that, under general conditions, full
aggregation can be obtained using the population’s first-order beliefs and, from (at least)
as many agents as there are states, agents’ expectations of the average belief of the popula-
tion.5 In particular, we explain how to more fruitfully use higher-order beliefs when there
are multiple states (indeed, PSM themselves point out the difficulties of extending the SP
procedure when there are three or more states, and we recap the issues with illustrative
examples in Section 3.1).

The basic idea is intuitive and can be described verbally, especially in the case of binary
states (Theorem 1, Section 2.2). For simplicity, suppose every agent sees a conditionally
i.i.d. signal about the unknown state according to an information structure known to
them but unknown to the principal. Now suppose the principal elicits, from each agent,
their belief about the state. By the law of large numbers, the population average belief
must equal the expected belief in that state.6 If the principal knows the expected belief
in each state, then they would be done: they could compare the elicited average to the
expected belief in each state.7 However, they do not know this mapping of the state to the
expected beliefs.

Suppose the principal asked two agents with different beliefs for their expectation of
the average belief of the population. By the law of iterated expectations, each reports
the weighted average of the expected belief conditional on the state, weighted by their
(different) likelihood of the two states. This presents the principal a simple system of two
linear equations in two unknowns; thus the expected beliefs in each state can be uniquely
recovered from the information from these two agents. We show in what follows that this
basic idea is much more applicable.

Weizsäcker, 2021). This mental process, often called “contingent reasoning,” has received little formal treat-
ment in economic theory. In subsequent work, Martínez-Marquina, Niederle, and Vespa (2019) investigate
axioms governing contingent reasoning in single-agent decision problems.”
4See for example the discussion on page 926 in Gul (1998).
5Section 3 discusses our rationale for choosing what information we ask agents for. Specifically, the ex-ante
prior is purely a modeling device. Agents are informed, i.e., the procedure interacts with agents at the
interim stage. Asking agents for their priors is not possible.
6This is an important point, see Remarks 3 and 4 below for further discussion.
7For informative signals, these expected beliefs must be different in the two states.
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In particular, we consider settings where agents understand their own information, but
misperceive the distribution of other agents’ beliefs etc.— see Theorem 3, Section 2.4. This
idea of the misperception of others’ information is related to the environments considered
in Eyster and Rabin (2010), Bohren (2016), and Frick, Iijima, and Ishii (2020). It is arguably
a more reasonable description of the real world. We consider 2 possible states of the
world, and allow that individual agents may be arbitrarily misinformed about the state
contingent average beliefs of others. We only assume 1) this misspecifiation about the
state contingent average beliefs of others is stochastically independent of their own belief
about the unknown state, and 2) on average, the agents’ misspecification is smaller than
the difference of the state contingent average beliefs. We show that in this case a variant
of PMBA still successfully aggregates agents’ information. Indeed, this is the basis of the
procedure that we take to the data in Section 3. Further, as we discuss there, SP is not
robust to this sort of misspecification.

While our present paper is theoretical, the idea of using agents’ higher-order beliefs
has been successfully implemented in practice, both in the lab and in the field. Section
3 discusses more generally the rationale for the information we choose to ask agents for,
and possible pitfalls in asking for richer information. Section 3.1 studies the implications
on the SP procedure. In particular, we demonstrate how our analysis implies that the pro-
cedure is more generally applicable than previously understood, and how our procedure
is applicable when it is not.

The original SP paper (Prelec, Seung, and McCoy, 2017) showed via lab experiments
that such procedures have promise not just in theory, but also in practice. However, a
reader might be concerned that our procedure uses the higher-order belief information
in a more exacting way than the SP procedure and related aggregation schemes: in par-
ticular the SP procedure for binary states of the world uses only the ordinal part of this
information,while we attempt a matrix inversion with these beliefs. With this in mind, we
provide evidence that our procedure has real-world plausibility. In Section 3 we revisit
their lab-experiments.8 We show that our procedure performs comparably with the SP
procedure even when the set of states of the world is binary (i.e., where our procedure
offers no advantage over the SP procedure).

A majority of this paper considers unincentivized procedures (i.e., we are not consider-
ing the incentives of agents to report truthfully, only aggregating their reports assuming
that they are). Nevertheless, our procedure naturally extends to a mechanism in which
truthful reporting is a Bayes-Nash equilibrium among agents, analogous to the connec-
tion between SP and Bayesian Truth Serum—see Section 4.2 for details. In the remainder

8We are grateful to the authors, Drazen Prelec, H Sebastian Seung and John McCoy for sharing their original
data with us.
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of the paper, the use of the word elicit only refers to unincentivized elicitation, and we re-
fer to our aggregation scheme as a procedure rather than a mechanism to clarify that there
are no incentives. We also show how to adapt our method when only asking for “votes”
from most agents (Proposition 5, Section 4.1), e.g., the state they perceive to be most likely
(this was also the main exercise considered in Prelec, Seung, and McCoy (2017)).

In Section 5, we attempt to understand the full power and limitations of aggregation
with higher-order beliefs. PMBA shows that with an infinite population, access to agents’
first-order and (a few agents’) second-order beliefs can suffice. We consider the case of a
finite population (in particular, where signals are not conditional i.i.d.). We show that if
the principal can extract the full hierarchy of agents’ higher-order beliefs, they can learn
the “full information posterior”, i.e., the posterior of an omniscient agent who shares the
agents’ prior belief and sees all their individual signals, despite the principal not know-
ing the prior and only collecting information about posteriors. Conversely, we show that
if the principal only sees a finite prefix of the hierarchy (e.g., only the first k beliefs) of a
population, then there remains an “identification problem,” i.e., there exist two different
information structures that could both result in this exact realization. In short, higher-
order beliefs cannot achieve full Bayesian aggregation in the case of a finite population
unless we can ask agents for their entire hierarchy, which we consider unrealistic/ im-
practical. Section 6 discusses the related literature in further detail and concludes.

2. POPULATION-MEAN-BASED AGGREGATION

In this section, we introduce our core model; we describe our Population-Mean-Based
Aggregation procedure (herein PMBA) and prove its validity.

2.1. General Model and Notation

There is an infinite population of agents. To this end, let N = {1, 2, . . .} be a countably
infinite set of agents, with i denoting a generic agent. There are a finite set of L states of
the world Ω = {ω1, ω2 . . . ωL}. The space of feasible beliefs over Ω, denoted as ∆(Ω), is
the L dimensional simplex ∆L.

Each agent i observes a signal in a set S with the associated sigma field F . To allow
for correlation, let us denote the common prior over Ω × SN by P. Given that an agent
observes some signal s ∈ S, their posterior belief that the state is ω is given by P(ω|s). Let
us denote the posterior beliefs of agent i by µi(s) ∈ ∆L and µ̃i as the associated random
variable. In what follows, the actual signal seen by the agent will often be irrelevant since
we are concerned with their beliefs. We will, therefore, suppress the dependence on the
signal in our notation. We define

µi(ω) = E[µ̃i|ω].
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In words, µi(ω) is the expected belief of agent i in state ω.
Finally, we define µ(ω) = limn→∞

1
n ∑n

i=1 µi(ω).9 This is the expected population aver-
age belief in state ω.

Given a vector x ∈ ∆(Ω), we will let xω refer to the component corresponding to ω;
i.e., µi,ω is the belief of agent i that the state is ω, µ̃i,ω is the random variable of agent i’s
belief that the state is ω, etc.

2.2. Binary States

In this section, we consider the case of binary states, i.e., L = 2. This procedure will
form the core of our general analysis.

We let PS
i,ω denote the induced marginal distribution of P over signals for agent i in state

ω. We also abuse notation so that µi represents agent i’s belief that the state is ω1: since
there are only two states, their belief that the state is ω2 is 1 − µi.

ASSUMPTION 1 (No Aggregate Uncertainty). We make the following assumptions on P:

(1) Imperfectly informed agents: for each agent i, we have that PS
i,ω and PS

i,ω′ are mutually
absolutely continuous with respect to each other.

(2) Limited correlation: For every ε > 0, there exists a finite n(ε) such that conditional on the
state, for any agent i, all but at most n(ε) agents’ signals are ε-independent of agent i’s
signal. Formally:

∀ε > 0, ∃n(ε) ∈ N s.t. ∀i, ∃Ni ⊆ N, |Ni| ≤ n(ε),

∀j ∈ N\Ni, ∀E, E′ ∈ F , ∀ω : |P(s̃i,ω ∈ E, s̃j,ω ∈ E′|ω)− PS
i,ω(E)PS

j,ω(E′)| ≤ ε.

This assumption may seem a little dense so some discussion is useful. The first con-
dition is simply to make the problem interesting/non-trivial: after all, if an agent is per-
fectly informed then aggregation is trivial. Next, we need an assumption regarding the
correlations between agents’ signals. Intuitively, assuming conditionally i.i.d. signals is
likely overly strong and does not capture the idea that agents’ information may be cor-
related. However, we cannot allow for arbitrary correlation—for example, if all agents’
information is perfectly correlated, then effectively, there is only one unique opinion in
the population, and no further aggregation is possible. Our notion allows for “enough
independence,” thereby roughly guaranteeing that for any agent, most other agents’ sig-
nals are approximately independent conditional on the state. This ensures that the law of
large numbers holds, so that the population average belief is a deterministic function the

9Note that without further assumptions, it is possible that this limit might not exist and/or might be differ-
ent depending on the ordering of agents. We ignore these possibilities. Simple sufficient conditions (e.g.,
conditional i.i.d. signals) rule out these concerns with an infinite population, and they are moot for any
arbitrarily large finite population.
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of state, i.e., in the notation of our model, in any state ω we have that

as n → ∞,
1
n

n

∑
i=1

µi →P µ(ω).

We emphasize that while this assumption relaxes the conditional i.i.d. assumption that is
regularly made, it is a non-trivial assumption. Whether it is sensible or not depends on
the context. For instance, in a political context, if all agents are drawing their information
from the same few noisy news sources, then there will be correlations in the beliefs and
our assumption would not be well-motivated for such a setting. Conversely, if we are
considering subjective but idiosyncratic product reviews, then the assumption is far more
natural.

As we will see in what follows, our PMBA procedure requires that the population ex-
pected beliefs differ in the two states, i.e., µ(ω1) ̸= µ(ω2). This is a very weak condition,
but one that one may nevertheless worry about. In principle, different distributions of
beliefs may nevertheless have the same expected belief. The following assumption deliv-
ers this: it requires that all agents individually are at least minimally informed. Formally,
this is defined with respect to the total variation metric. This is akin to a normalization—it
simply ensures that we do not have infinitely many arbitrarily uninformed agents.

To this end, we need some more notation: let Gi,ω denote the induced distribution of
private beliefs of agent i in state ω. We will abuse notation and also let it denote the
cumulative distribution function of the belief of agent i in state ω.

ASSUMPTION 2 (Minimal Information). We assume that there exists δ > 0, such that for any
agent i, the total variation distance between Gi,ω1 and Gi,ω2 is uniformly bounded below by δ, i.e.,

∃δ > 0 s.t. ∀i : sup
E⊆[0,1]

|Gi,ω1(E)− Gi,ω2(E)| ≥ δ.

The first main result of our paper shows the power of the PMBA procedure as described
in Procedure 1.

THEOREM 1. Suppose the information structure among agents satisfies Assumptions 1 and 2.
Then the PMBA procedure (Procedure 1) correctly recovers the true state of the world almost
surely.

Before we discuss a sketch of the proof and some directions to generalize the procedure,
some remarks about the procedure and the result are in order.

REMARK 1. Assumptions 1 and 2 jointly are sufficient for PMBA to be valid, but it can be shown
that they are not necessary. A full characterization is easy to describe but perhaps unsatisfying—
as long as the information structure is such that the law of large numbers holds, i.e., in any
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PROCEDURE 1. Population-Mean-Based Aggregation, 2 states

(1) Elicit, from each agent i ∈ N, their belief µi. Calculate µ̂ defined as:

µ̂ = lim
n→∞

1
n

n

∑
i=1

µi

(2) Select two agents, A and B, such that µA ̸= µB. Elicit from each of these
agents their expectation of the average posterior beliefs in the population, i.e.,
denoting si as the signal seen by agent i, elicit for each i = A, B:

αi = lim
n→∞

E

[
1
n

n

∑
j=1

µ̃j

∣∣∣∣si

]
.

(3) Calculate µ(ω1), µ(ω2) as:(
µ(ω1)
µ(ω2)

)
=

(
µA 1 − µA
µB 1 − µB

)−1(
αA
αB

)
(1)

Note that the right-hand side is elicited from the agents directly; and since
µA ̸= µB, the middle matrix is invertible.

(4) Recover the state by comparing µ̂ calculated in step 1 with µ(·) calculated
above. The state of the world is ω s.t. µ̂ = µ(ω).

state ω, plimn→∞
1
n ∑n

i=1 µ̃i = µ̄(ω) ( which is an implication of Assumption 1); and µ̄ ̸= µ̄′

(respectively, an implication of Assumption 2), it will be clear from the proofs that PMBA will
successfully recover the true state of the world. Expressing this (in particular, concentration) in
terms of primitives, however, appears out of reach.

REMARK 2. It is worth re-emphasizing that the PMBA procedure does not require any knowledge
of the underlying information structure among agents—a different way of interpreting our result,
therefore, is that as long as these conditions are satisfied, knowledge of the information structure
among agents is not needed to fully aggregate their information. That said, it is possible to con-
struct examples where these conditions are violated but a principal who knows the information
structure among agents can aggregate their information. For example, one can construct settings,
e.g., with two states, such that µ̄(ω1) = µ̄(ω2), but the population distribution of posteriors in
these two states are different. A Bayesian principal who knows this would be able to perfectly
aggregate agents’ information, but PMBA would clearly fail in such a setting.10

REMARK 3. It is important, both conceptually and technically, to note that our assumptions
(in particular, Assumption 1 part (2)) imply that µ̄(ω) is a degenerate random variable, i.e., a
10As a simple illustration, consider the following example: there are two states, {ω1, ω2}, and two signals,
{s1, s2}. All agents’ prior is that either state is equally likely. In state ωj, agent i receives the “correct” signal
sj with probability 1

2 + e−i, and with the remaining probability receives the incorrect signal s3−j (this clearly
violates Assumption 2). PMBA will fail in this setting: the expected population average belief in both states
is 1

2 . However, by observation, a Bayesian who knows the signal structure can learn from the agents’ beliefs.
9
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deterministic function of the state. Note that our PMBA procedure would fail otherwise because
it recovers E[µ̄(ω)|ω], which may not equal the realization if µ̄(ω) is a non-degenerate random
variable. One can construct settings where PMBA would fail, but a Bayesian principal who knew
the information structure among agents would learn the true state of the world (for example, if
µ̄(ω) is a non-degenerate r.v. but has disjoint support across the states).

Conceptually, our assumption puts additional structure on what we mean by a “state of the
world.” For example, consider a setting where agents’ signals are exchangeable conditional on the
state. In this case, DiFinetti’s theorem tells us that the signals are i.i.d. conditional on state and
an additional latent random variable. Our assumption then rules out the existence of additional
latent random variables on which µ̄(ω) depends—the description of the state must be rich enough
so that µ̄(·) is a deterministic function of ω.

A formal proof is given in Appendix A. Here, we want to discuss how the various
assumptions play a role in the result. As we pointed out earlier, Part (1) of Assumption 1
is mainly a normalization. The key processing step in this procedure is Step 3. By the law
of iterated expectations, an agent i with beliefs µi will report, in step (2),

αi = µiµ(ω1) + (1 − µi)µ(ω2).

Our procedure inverts this relationship to learn the unknown mapping from ω to µ(ω),
using (1).

Step (4) then recovers the state by comparing the calculated µ(·) to the elicited µ̂. Part
(2) of Assumption 1 ensures that an appropriate law of large numbers holds so that in
state ω, µ̂ = µ(ω), almost surely. Assumption 2 is used to guarantee that µ(ω1) ̸= µ(ω2).
Therefore, the elicited µ̂ will almost surely match µ(ω) for a unique state, and the proce-
dure thus successfully concludes. Taken together, therefore, these give us our result.

To be clear, the model and result of this section are explicitly written for a common prior
model where the agents perfectly understand the signal structure among themselves, and
only the principal does not. This knowledge of each other’s information among agents
may seem daunting or even implausible in applied contexts.

To that end, our procedure does not require agents to have an exact understanding
of the distribution of signals among fellow agents. We can observe that it is sufficient
for each agent to understand the aggregate implications perfectly; that is to say, the ex-
pected population beliefs in each state, µ(·) since that is all they need to know (other than
their own beliefs) to calculate the information that we elicit. This is a substantially lower
informational requirement. Indeed, in Section 4.1, we show how even less demanding in-
formation may be elicited (e.g., asking most agents what state they think is more likely).

However, even this may seem high—perhaps agents don’t perfectly understand even
the aggregate implications of the model—for example, each agent has noisy information

10
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about the true µ(·), rather than exact knowledge of it. In Section 2.4, we show how mod-
ifying our procedure allows for population aggregation in such a setting.

2.3. L > 2 States

We now consider the case of L > 2 states. Intuitively, we generalize the “matrix in-
version” ideas of the previous subsection to propose a PMBA procedure that works for
L states. However, having more than 2 states introduces some difficulties; notably, the
assumptions that guarantee this process works become slightly more demanding. As-
sumption 1 still applies as written; observe that nothing in that assumption was specific
to the case of binary states.

However, a direct generalization of Assumption 2 to more than two states is generally
not sufficient to assure that the state-dependent averages are unequal across states. So,
we assume the L state generalization of its implication directly.

ASSUMPTION 3. We assume that P is such that for any two states ω and ω′, µ(ω) ̸= µ(ω′).

Note that while Assumption 3 is not directly stated in terms of the primitives of our
model (P), it should be clear that this is a property that can be easily satisfied.11

Finally, in the 2−state case, we are guaranteed the a.s. existence of two agents who
have different beliefs. The appropriate generalization turns out to be the existence of L
agents whose beliefs constitute a full rank L × L matrix so that the analog/generalization
of (1) in step (3) can be carried out. The following assumption guarantees this:

ASSUMPTION 4. We assume that P is such that for any agent i, the support of beliefs supp(µ̃i)

contains L distinct points, such that those L beliefs, viewed as L-dimensional vectors, constitute a
set of full rank. Alternately and equivalently, we require that the convex-hull of the support has
an interior relative to ∆L.

One might wonder why such a condition was not required in the case of binary states.
The answer is that when L = 2, this condition simply reduces to requiring that the sup-
port of the agents’ beliefs has at least two points in any state. Part (1) of Assumption 1,
however, implies that the support of the agents’ beliefs is the same across states. If this
support was degenerate at a single point, we would clearly violate Assumption 2. Note
that with L > 2, there clearly exist settings that violate Assumption 4 despite satisfying
Assumptions 1 and 2; for instance, consider a setting where L = 3 so that the simplex is a
triangle, but there are only two possible signals, so that there only two induced beliefs.

11For example, in the case of finite conditionally i.i.d signals, this property is generically satisfied in the
belief space, in the sense of full measure.
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We should note that this condition is weak in at least two ways. First, in the standard
genericity sense: a generically chosen set of feasible posteriors will be full rank. Sec-
ond, and perhaps more interestingly, even in settings where there are fewer signals than
states (e.g., agents can run only a unique binary-outcome experiment whose outcome de-
termines their posterior), as long as the agents can acquire enough independent signals
(e.g., conduct a sufficient number of independent experiments), the set of feasible poste-
riors is full rank. We formally state this claim below— the proof essentially repurposes a
lemma of Fu, Haghpanah, Hartline, and Kleinberg (2021).

CLAIM 1. Suppose that signals are conditionally i.i.d. draws from a finite set S, and Assumption 3
is satisfied. If each agent gets L− 1 independent draws from the distribution PS

ω, then Assumption
4 is satisfied with the signal space SL−1.

We are now in a position to describe our main procedure, Population-Mean-Based Ag-
gregation (PMBA) (Procedure 2 below) and state our main result for this setting.

PROCEDURE 2. Population-Mean-Based Aggregation, L states

(1) Elicit, from each agent i ∈ N, their belief µi. Calculate µ̂ defined as:

µ̂ = lim
n→∞

1
n

n

∑
i=1

µi

(2) Select L agents I = {i1, i2, . . . , iL} such that the L × L matrix µ =
(µT

i1
, µT

i2
, . . . , µT

iL
)T is full rank.

(3) Let si be the signal seen by agent i. Elicit from each of these agents their ex-
pectation of the average posterior beliefs in the population, i.e., elicit for each
i ∈ I:

αi = lim
n→∞

E

[
1
n

n

∑
j=1

µ̃j

∣∣∣∣si

]
.

Denote α = (αT
i1

, αT
i2

, . . . , αT
iL
)T.

(4) Solve

µ̄ = µ−1α (2)

Note that the right-hand side is elicited from agents directly and therefore µ̄
can be recovered. The state ω is the row of the recovered µ̄ that equals the
calculated µ̂.

THEOREM 2. Suppose L > 2 and the common prior P satisfies Assumptions 1, 3, and 4. Then
the PMBA procedure (Procedure 2) recovers the true unknown state of nature ω almost surely.
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2.4. Aggregation in Misspecified Information Settings

In practice, agents may have limited and individually incorrect knowledge about the
aggregate information structure: in particular, a standard concern is that while agents
may have meaningful information that shapes their personal beliefs, they nevertheless
may be less informed about the belief of others, or even summary statistics of the beliefs
of others like the average belief as elicited by our procedure.

Secondly, in practice there will be only a finite number of agents, and therefore it is
unlikely that one of the probabilities recovered from the matrix-inversion will exactly
match the population average beliefs.

Nevertheless similar ideas can be used to aggregate population information robustly in
such settings. In the interests of brevity, we consider the case of two states; the extension
to L states is analogous to the previous section.

We maintain the assumptions on the true signal generating process P as in Section 2.2,
i.e., Assumptions 1 and 2. Instead of assuming common knowledge of P, we assume that
the agents’ information about P is misspecified—agent i believes that the state-dependent
population averages are (αω1

i , αω2
i ) ∈ [0, 1]2. Note that each agent understands how to

interpret their own signal correctly, i.e., the misspecification is purely about knowledge
of the population averages. We make the following assumption on the relation between
agents’ beliefs and the true state-dependent population means.12

ASSUMPTION 5. For each agent i and state ω ∈ Ω we have that

αω
i = µ̄(ω) + ζω

i

where ζω
i is independent of agent j’s signal sj conditional on the state, for all agents j. Further we

assume that

• Conditional on ω the ζω
i ’s satisfy limited correlation across agents.

• For each ω ∈
Omega, the ζω

i ’s are have a common mean, E[ζω
i ] = E[ζω] for all i.

• The distributions of α1
i and α2

i have disjoint support for all i.

Let us briefly discuss Assumption 5. One implication of this is that each agent under-
stands that conditional on the state their expectation of the population mean is indepen-
dent of their first-order belief. The assumption that supports are disjoint is necessary,

12Even this weaker assumption may be violated in the real world where higher-order belief data is often
noisy and boundary reports are common. That said, in practice, it may be more robust to use a linear
regression (or a tobit regression to deal with boundary issues) on the lines suggested in Palley and Satopää
(2020) and Peker and Wilkening (2023). We do not pursue this line in this paper as we feel it is out of scope,
and further even the current mechanism shows promise on real world data as we show in our exercise in
Section 3. Nevertheless, this we believe this presents a tantalizing possibility for future work.
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keeping in mind that agents are fully Bayesian in their inferences, and they have mis-
specified knowledge. To be precise, this assumption avoids that their expectation for the
population average in state ω1 is larger than in state ω2 which would contradict Bayes
rationality. The limited correlation is necessary for a law of large numbers to hold.

Importantly note that we do not assume that E[ζω] = 0: agents’ beliefs about the popu-
lation averages may be biased even on average (as has indeed been observed in practice),
and these biases may be different in different states.13

PROCEDURE 3. Misspecified Information Population-Mean-Based Aggre-
gation

(1) Elicit, from each agent i, their belief µi. Calculate µ̂ defined as:

µ̂ = lim
n→∞

1
n

n

∑
i=1

µi

(2) Elicit from all agents their interim expectation of the average posterior belief
over all agents—denote this as αi for agent i.

Partition agents into two infinite groups A and B such that µA ̸= µB (µA, µB
are defined below). Calculate the average of the αi’s in each group, A, B. For
example, without loss, rename agents so that A = {1, 2, 3, . . .}. Then define

αA = lim
n→∞

1
n ∑

i≤n
αi,

µA = lim
n→∞

1
n ∑

i≤n
µi.

and define µB, αB analogously.
(3) Calculate µ(ω) as(

µ(ω1)
µ(ω2)

)
=

(
µA 1 − µA
µB 1 − µB

)−1(
αA
αB

)
(3)

Recover the state as:

ω0 = arg min
ω∈Ω

|µ̂ − µ̄(ω)|. (4)

We can now state our aggregation result in the misspecified information setting.

THEOREM 3. Suppose the true signal distribution process satisfies Assumptions 1 and 2, and
that the agents’ knowledge regarding the information structure satisfies Assumption 5. Suppose
further that ∣∣∣E[ζ1]

∣∣∣+ ∣∣∣E[ζ2]
∣∣∣ < µ̄ (ω1)− µ̄ (ω2) . (5)

13See also Remark 5 which clarifies how SC/ SP may fail in this setting.
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Then, Misspecified Information Population-Mean-Based Aggregation (Procedure 3) cor-
rectly recovers the true state of the world almost surely.

Theorem 3 establishes that indeed the conceptual idea of second-order elicitation suc-
cessfully overcomes the limited understanding of agents’ regarding the private belief dis-
tributions of their peers. Compared to the PMBA aggregation under complete knowledge
of the information structure, the two infinite groups A and B play the roles of the two
agents in the PMBA.

Thus moving to a more realistic assumption of an incomplete and individually incor-
rect understanding of the information structure necessitates the elicitation of the expected
population averages from large groups: we are relying on the crowd for both first- and
second-order statistics. The main issue is that individual agents’ understanding of the
population averages is incorrect. However, by the law of large numbers we can appro-
priately average these individual agents’ reports over two groups, A and B. The average
first-order belief, and average report of population average, of agents in each group, will
serve as the analogs of the two individuals in the baseline PMBA procedure (Procedure
1).

The basic intuition is that even though individual agents are misinformed about the
distribution of their fellow agents’ beliefs, on average these errors are not “large” (even
though individual agents’ errors can well be) relative to the true difference between the
two population averages (recall condition (5) in Assumption 5 makes this possible). This
ensures that the “closer” recovered µ̄(ω) to the realized average population distribution
µ̂ is indeed the one corresponding to the state.

Finally, since we are using the “closest” distribution rather than an exact match, this
procedure always selects a state (for the earlier procedures, with high probability under
a finite population, the procedure would simply fail). It should be clear that under suffi-
cient concentration, a finite population, high probability version of Theorem 3 holds. The
exact bounds/guarantees would of course depend on assuming more details of the in-
formation structure among agents (e.g. how much correlation), so we do not pursue this
avenue further in this paper. Instead, in what follows in Section 3 we report the results of
taking this mechanism to the data.

3. PMBA-STYLE PROCEDURES COMPARED TO SP

We now compare our PMBA procedure to the current gold standard, i.e., the Surpris-
ingly Popular (SP) procedure of Prelec, Seung, and McCoy (2017). First we describe SP
formally, and explain formally when our procedure can potentially succeed while SP
would not. Having described the theoretical properties of PMBA procedures, the natural
question for a reader is while this works in theory, could it work in practice. To answer
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this in the affirmative, we revisit the experiment of Prelec, Seung, and McCoy (2017). We
were graciously provided the raw data for their experiment by the authors to benchmark
our own procedure.

3.1. The Surprisingly Popular procedure

The original SP procedure considers the case analogous to what we consider in Section
4.1—eliciting from each agent a “guess” or “vote” of the state they consider most likely
given their beliefs. It also considers the case of directly eliciting beliefs (see Section 1.4
of the Supplementary Information Section of Prelec, Seung, and McCoy (2017)). More
precisely, Section 1.4 of PSM departs from the idea of SP to identify the actual popula-
tion signal distribution by eliciting the agents’ posterior beliefs and their prediction of
other agents’ signal. Our discussion of SP here also applies to the alternative procedure
proposed by Wilkening, Martinie, and Howe (2021), Surprisingly Confident (SC).14 Like
SP, SC aggregates when there are only two states; moreover, like PMBA, SC is also based
on the linearity of the mapping from first-order belief to its corresponding second-order
belief.

We formally define the procedure in our general environment, generalize the existing
results, and highlight its limitation relative to PMBA. To start, consider the case of binary
states and let the common prior P among agents satisfy Assumption 1 and Assumption
2. In our notation, the SC procedure can be described as follows:

PROCEDURE 4. Surprisingly Popular (SP), 2 states

(1) Elicit from each agent i ∈ N, their belief µi. Calculate µ̂ defined as:

µ̂ = lim
n→∞

1
n

n

∑
i=1

µi

(2) Select one agent, i, and elicit their expectation of the average posterior beliefs
of the population, i.e., denoting si as the signal seen by agent i:

αi = lim
n→∞

E

[
1
n

n

∑
j=1

µ̃j

∣∣∣∣si

]
.

(3) Compare the realized population average belief µ̂ with agent i’s expectation
αi. If µ̂ > αi, the state of the world is ω1, otherwise it is ω2.

This procedure is arguably even simpler than our PBMA procedure. Only one agent
is required to report their expectation of the population average and no calculation is

14SC was named as such because PSM in their original paper referred to the subjects’ posterior beliefs as
their confidence. PSM’s main object of analysis uses agents’ guesses or votes, and their expectation of votes
of others, while SC directly uses agents’ posteriors and expected population-average posteriors.
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required. Nevertheless, SP can recover the truth in the binary state setting as the following
result shows.

PROPOSITION 1. Consider a binary state space. Suppose that the information structure among
agents satisfies Assumptions 1 and 2. Then the SP procedure (Procedure 4) correctly recovers the
true state of the world.

Note that this result provides a stronger theoretical guarantee of the applicability of the
SP procedure: the original PSM paper considers only a finite set of possible signals. We
omit a formal proof. At a high-level, this proceeds straightforwardly from Lemma 2: In
a two-state setting (with two or more signals), for any agent i, the induced distribution
of beliefs on ω at state ω first-order stochastically dominates the induced distribution of
the belief on ω at state ω′ ̸= ω. Therefore the population average belief of state ω in
ω must be higher than the population average belief of state ω in state ω′. Any agent’s
expected population average belief must be submitting a convex combination of these
two. Therefore if the true state is indeed ω, it will be “surprisingly popular” relative to
this expectation of the average beliefs in the population.

In summary, the SP procedure aggregates beliefs in the binary state setting. However,
it is not applicable beyond two states. Indeed the original SP procedure cannot be applied
to more than binary states without strong additional assumptions. The reason is that, in
general, more than two states can be “surprisingly popular”, leaving an indeterminacy
in how to define the procedure. Even when defining the SP procedure as e.g., picking the
state that surpassed by most its expectation, the procedure does not achieve aggregation.
PSM impose an additional assumption (see e.g., their Theorem 3), one of “diagonal dom-
inance,” roughly:15 the posterior of an agent who thinks state ω is most likely must also
place a higher posterior on ω than any voter voting for ω′ ̸= ω places on ω. We exhibit
in Appendix C a counter-example showing that such an assumption is necessary.

At this point, a reader may wonder about whether other iterative or sequential proce-
dures that work for 2 states can successfully aggregate information in settings with more
than two states. The short answer is no, for similar reasons as the binary state PMBA
cannot be used sequentially—recall Remark 3.

REMARK 4. One possibility a reader may consider feasible is, in a setting with L > 2 states
{ω1, . . . , ωL}, to run SP sequentially. That is to say first elicit beliefs corresponding to states ω1

and its complement (states {ω2, . . . , ωL}), and run SC/SP on this “binary state” environment.
However, note that in this case, the realized population average belief conditional on the second
15To be clear, the setting there is one of prediction normalized votes, we are translating to the analogous
assumption in our setting for convenience.
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“state” ({ω2, . . . , ωL}) is not deterministic as a function of this “state” (i.e., it depends on which
of the states ω1 thru ωL actually realized). As a result the existing procedures do not apply.

Not to belabor the point, but this has two takeaways. Firstly, consider what is often
modeled as a binary state space setting: e.g. we wish to aggregate information on the
true/false question “Is Chicago the capital of Illinois”. The true underlying state that
determines the distribution of beliefs etc may nevertheless be multivalent (e.g. “Chicago
is the capital”, “Springfield is the capital”, “Evanston is the capital” etc.). If that is indeed
the case, existing approaches may fail even if the question of interest (“Is Chicago the
capital of Illinois”) takes only a binary value. PMBA can in principle be applied to such
settings, with the proviso that the set of possible states needs to be correctly identified,
and corresponding beliefs elicited.

Finally, one might ask whether the existing procedures are robust to misspecification,
i.e., when agents’ beliefs about the population average are incorrect (recall Section 2.4).
When agents’ information about the population average is misspecified, SP as written
can straightforwardly fail (if the agent who is asked for their expected population aver-
age belief is misspecified, then the wrong state may be surprisingly popular). We follow
the path taken by PSM in their implementation, and consider “average SP”, i.e., ask all
agents for the expected population average, average this, and then given the true popu-
lation average check which state is “surprisingly popular” relative to that. We show by
example that there exist settings where the conditions of Theorem 3 are satisfied, so that
misspecified Information PMBA can aggregate information, but SP does not.

REMARK 5. Suppose we have that Assumption 5 is satisfied and further that µ(ω1) = 3
4 and

µ(ω2) =
1
4 , i.e. the average beliefs in the population are 3

4 in state ω1 and 1
4 in state ω2. Further

suppose that E[ξ2] = 0 but E[ξ1] =
3

16 . In other words, on average, agents’ information about the
population average in state 2 is correct, but on average, agents believe that in state ω1, the average
belief in the population is 15

16 .
By a simple calculation, in state ω1, the average expected population belief is 49

64 . This is larger
than the population average belief of 3

4 in ω1, so state ω2 is surprisingly popular in this state, and
therefore SP does not correctly aggregate information in this state.

Further, it is easy to verify that the condition of Theorem 3 holds in this case, and therefore, our
misspecified Knowledge PMBA procedure correctly aggregates information.

Note that the converse is also possible, i.e. there exist settings where agents have mis-
specified information in which SP correctly averages state, but which violate our Assump-
tion 5. SP correctly aggregates state whenever the average of agents’ expectations of pop-
ulation average belief lies in the interval of population average beliefs.
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3.2. Comparing the Procedures in the Data

To recall, the authors in Prelec, Seung, and McCoy (2017) report the results of using SP
to aggregate information in three experiments, namely:

(1) Study 1: State Capitals Respondents got prompts of the form “X is the capital of
State y”. Agents had to respond with T/F, and their predicted population average.

(2) Study 2: General Knowledge Respondents were given general knowledge statements,
e.g., “Japan has the highest life expectancy in the world.” Responded with T/F,
and their predicted population average.

(3) Study 3: Dermatology A collection of dermatologists were recruited and shown pic-
tures of lesions. They were asked asked to evaluate whether it was benign or ma-
lignant (1–6 scale) and what they thought other dermatologists would say (1–11
scale).

Note that in each case the experimenter knows the “ground truth” (in the first two these
are easily ascertained, in the latter study the pictures were chosen such that the true ma-
lignancy of the tumor was known). Therefore the experimenter can compare whether the
aggregation resulting from the procedure results matches the ground truth. This can also
be compared with simpler procedures such as population average or majority.

Table 1 reports the results of PMBA on the raw data from these studies, and how these
results compare to SP. Formally, we used the procedure described in Section 2.4, i.e. Pro-
cedure 3, since that is best suited for “real world” use. We emphasize that our procedure,
summarized in Table 1, performs roughly as well as SP.

Note that this remarkable performance of PMBA is despite the studies being in binary
settings where our procedure has no theoretical advantage, but as we described earlier
may be at a practical disadvantage (as we said earlier, PMBA-style procedures use the
cardinal nature of the beliefs since they attempt a matrix-inversion step). Further, Pr-
elec, Seung, and McCoy (2017) does not elicit agents’ beliefs and uses their votes as we
described above. However, they do ask agents to report their confidence in their assess-
ment. We interpret this self-reported confidence as agents’ first-order beliefs to perform
the matrix inversion step. This achieves good results as shown in Table 1.16

Formally, for each experiment we conduct the following procedure, which is an amal-
gam of Procedures 3 and 5

(1) As we described earlier, we use the reported confidence of each agent as their
belief.

(2) To determine the groups we average over (recall Procedure 3), we split the popu-
lation into two groups, according to their vote on the question.

16Documented code has been submitted with the submission.
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Study Majority SP PMBA

Capitals 62% 90% 88%
Trivia 56.2% 62.5% 60.29%

Dermatology Lesions 67.5% 73.75% 65.15%

TABLE 1. Table summarizing the results of PMBA performance on Experi-
mental data from Prelec, Seung, and McCoy (2017). Study column denotes
which study is under consideration. Majority column reports the fraction of
questions in that study where the majority matched the ground truth, anal-
ogously for SP and PMBA.

(3) For each group, we use the average confidence of members as the corresponding
“belief”, and the average of the vote shares predicted by members of the group as
the corresponding predicted vote share for that group.

(4) We then solve for the predicted state-contingent expected vote shares given these
according to PMBA (recall (3)).

(5) The predicted state is the one whose vote share is closer to this predicted vote share
(3).

We should note two particular difficulties with our implementation: firstly, agents’ con-
fidence in this experiment is a self-report, it is not elicited in an incentivized fashion. This
causes no difficulties for Prelec, Seung, and McCoy (2017) in their analysis since this is
not an input to SP (recall they are using agents’ “votes” as we described above), they
only use it to compare SP against a confidence-weighted majority benchmark. However,
for our procedure, we require (some) agents’ first-order beliefs for the matrix-inversion
step. Even granting this, a particular difficulty is on the third experiment: it is particu-
larly problematic to interpret confidence as belief since elicitation was on 1− 6 and 1− 11
scales. It is an exciting prospect to design and test PMBA directly (with elicited beliefs
and population average beliefs) in settings with more than two states. We defer that to
future work.

4. EXTENSIONS

In this section, we show how to extend the basic PMBA to other settings. In Section 4.1,
we recognize that, in practice, eliciting beliefs from agents is difficult—we show that a
variant of the procedure can aggregate information if we only elicit “simple” information
(e.g., report which state is thought more likely) from most agents, and elicit more fine-
grained information from only a small number of agents. Both extensions are displayed
for the case of 2 states of the world.
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4.1. Aggregating Guesses instead of Beliefs

In this section we discuss how our PMBA procedure can be adjusted to environments
where not beliefs but rather finite guesses are elicited, e.g., which state is more likely
rather than what is the probability of state ω = 1 (this is also the formulation in Prelec,
Seung, and McCoy (2017)—see Section 3.1). Consider a binary state space and an infor-
mation structure that satisfies Assumptions 1 and 2. The action-based PMBA procedure
is defined in Procedure 5.

PROCEDURE 5. Action-based PMBA, 2 states

(1) Elicit from each agent i ∈ N, the state ω ∈ 0, 1 they consider more likely,
ai ∈ 0, 1. If their belief equals 0.5, have them report ai = 1.a Calculate α̂
defined as:

α̂ = lim
n→∞

1
n

n

∑
i=1

ai

(2) Select 2 agents, A and B, such that aA ̸= aB. Elicit from each of these agents
i = A, B their belief µi and their expectation of the average report in the pop-
ulation, i.e., denoting si as the signal seen by agent i, elicit for each i = A, B:

αi = lim
n→∞

E

[
1
n

n

∑
j=1

aj

∣∣∣∣si

]
.

(3) Calculate ᾱ(ω1), ᾱ(ω2) as:(
ᾱ(ω1)
ᾱ(ω2)

)
=

(
µA 1 − µA
µB 1 − µB

)−1(
αA
αB

)
(6)

Note that the right-hand side is elicited from agents directly; and since αA ̸=
αB, the middle matrix is invertible.

(4) Recover the state by comparing α̂ calculated in step 1 with ᾱ(·) calculated
above. The state of the world is ω s.t. â = ā(ω).

aNote that this tie-breaking cannot be ensured by an incentive-compatible elicitation mechanism.

For the action based PMBA procedure to be viable we require the existence of two
agents A, B with differing first-order guesses, aA ̸= aB. Assumptions 1 and 2 are not
sufficient to assure this. The following assumption, however, guarantees the existence of
two such agents.

ASSUMPTION 6 (No Herding). We assume that there exists δ > 0, such that for any agent i
and any state ωj = ω1, ω2, we have that the probability agent i assigns to state ωj conditional on
their signal si is larger than half with a probability of at least δ.

We can now present our result on aggregation in this environment.
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PROPOSITION 2. Consider a binary state space. Suppose that the information structure satisfies
Assumptions 1, and 6. Then the Action Based PMBA procedure (Procedure 5) correctly recovers
the true state of the world a.s.

The result follows along the same lines as Theorem 1.

4.2. Incentivizing Truthful Reporting

In our analysis so far we abstracted away from incentive issues, assuming truth-telling.
We now discuss how truthful elicitation and aggregation can simultaneously be achieved
via a slightly adjusted mechanism that includes payments which ensure truthful report-
ing is a (strict) Bayes Nash Equilibrium.

Recall that when there is a verifiable state that is or will be known to the principal, the
principal can truthfully elicit agents’ beliefs about the state by paying them using a proper
scoring rule. A proper scoring rule pays agents as a function of the reported beliefs and
the true state so that for any agent, truthful reporting of beliefs is a dominant strategy.
For example, classic scoring rules such as the Brier score (Brier, 1950) or the logarithmic
scoring rule make truthful reporting a dominant strategy for expected utility maximizing
agents.17

When the state is not verifiable/observable to the principal, proper scoring rules are not
applicable. However, the principal may nevertheless be interested in ensuring that agents
are incentivized to report their beliefs truthfully. A leading example from Prelec (2004)
is the case of subjective surveys/evaluations of a new product. In their example, the
principal (e.g., a marketer) wishes to incentivize truthful reporting by agents, but there is
no “ground truth” on which to base the rewards. The basic idea of Bayesian Truth Serum
of Prelec (2004) is that agents’ beliefs also have implications on their second-order beliefs
(i.e., how they think the population will evaluate them). The population averages are
indeed verifiable, and therefore can be used to incentivize agents. A similar idea works
here, we describe it loosely for completeness:

(1) Elicit beliefs and second-order beliefs from agents as prescribed in PMBA to learn
the true state ω (which variant of PMBA is used, and what is elicited, depends on
the setting).

(2) For the agents who were asked for second-order beliefs, pay them based on a
proper scoring rule as a function of their expected population average beliefs, and
the true calculated population average beliefs.

(3) For all other agents, pay them using a proper scoring rule as a function of their
beliefs and the state ω recovered by PMBA.

17There is a large literature proposing more robust scoring rules for various settings, see e.g., Karni (2009)
for an example.
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Observe that under the maintained assumptions of correctness of the corresponding PMBA
procedure, truthful reporting will be a perfect Bayesian equilibrium among agents. To
understand why, first note that since there is a large population, the average beliefs are
effectively observed: even if a single agent misreports, this does not affect the average.
Therefore, rewarding the two agents with a proper scoring rule based on their expected
population average beliefs is feasible and will incentivize truthful reporting. These agents
have no incentive to misreport their first-order beliefs because there is no associated pay-
ment. Note that given this, the true underlying state can be correctly calculated. A proper
scoring rule against this recovered state ensures the truthful reporting of first-order beliefs
for all the agents. Finally, there is no “compound” incentive for an agent who reports both
first- and second-order beliefs to misreport their beliefs: their incentive to report their
second-order beliefs truthfully was already argued, and misreporting their first-order be-
liefs will cause the PMBA to fail and therefore will void payments.

5. BAYESIAN AGGREGATION WITH FIXED FINITE POPULATIONS

So far, we have discussed the possibility of aggregating information with an infinite or
arbitrarily population. In practice, of course, populations are finite. The procedures given
above will correctly identify the true state with high probability in large populations. For
instance, in our baseline model, even with a large but finite population, the average belief
in the population will concentrate around the expected belief conditional on the true state.
As long as the expected beliefs conditional on state are sufficiently different across the
states, an appropriately modified procedure will recover the true state of the world with
high probability.

Nevertheless, at a theoretical level, one may wonder if, with a finite population, there
is any value to eliciting higher-order beliefs, ignoring the difficulties of such elicitation in
practice. To make this potentially valuable, we need a more exacting benchmark, since,
as we argued above, PMBA will already aggregate information with appropriately high
probability. The benchmark we use therefore is one of a “full information posterior,” i.e.,
can we, without knowledge of the underlying information structure P, and eliciting solely
agents beliefs (and higher-order beliefs), nevertheless reach the same posterior beliefs
as an omniscient agent who knew P and directly observed all the agents’ signals? Our
previous results answered this in the positive and showed that for the case of an infinite
population (under the maintained assumptions), the output of the PMBA could identify
the degenerate belief on the true state.

In this section, we answer these questions primarily in the negative. First we show
that with a finite population, and with elicitation of the entire hierarchy of beliefs, an
agnostic procedure can learn the prior and signals of each agent. This result is essentially
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a straightforward corollary of the results of Mertens, Sorin, and Zamir (2015). However,
elicitation of the entire hierarchy is obviously impractical in real-world applications.

By contrast, we show that, for elicitation up to any finite-order of beliefs, there is an
identification problem: there exist information structures where the exact same finite hi-
erarchy can be realized among agents in both states.

Consider a finite set of agents {1, 2, ..., N} with a common prior P defined on a finite set
Ω × S (where S = ×N

i=1Si is the set of their signal profiles). The aggregator does not know
P but can ask the agents to report their higher-order beliefs. In this section, we show that
the aggregator can effectively elicit the full information posterior, provided that they can
ask the agents to report their entire hierarchy of beliefs and that each hierarchy of beliefs
uniquely identifies a signal of an agent.

To this end, we recall the standard formulation of higher-order beliefs by Mertens
and Zamir (1985). Denote by sk

i the kth-order belief of agent i over Ω. For instance,
s1

i =margΩP (·|si),

s2
i

(
ω, s1

−i

)
= P

({(
ω′, s′−i

)
: ω′ = ω and s′1−i = s1

−i

}
|si

)
,

and so on. Denote by s̃i the hierarchy of beliefs induced by signal si, i.e., s̃i =
(
s1

i , s2
i , ...

)
.

Let S̃i be the set of hierarchies of beliefs induced from Si and P̃ the distribution induced
by P on Ω × S̃. Moreover, by Mertens and Zamir (1985), each s̃i induces a belief π̃i (s̃i)

over Ω × S̃−i, where S̃−i = ×j ̸=iS̃j.

THEOREM 4. Suppose that µ̃ has a finite support and the agents report s̃ = (s̃i)i. Then there
exists a procedure which recovers the “pooled information” posterior on the states, i.e., P̃(·|s̃).

One might ask whether such a result can be obtained while only asking agents for their
higher-order beliefs upto some finite order (i.e., as opposed to the full infinite hierarchy).
It is possible to show that in general, without further assumptions, this is not the case: the
result of Theorem 4 cannot be achieved if the aggregator only knows the reported beliefs
up to order m. Our argument is adapted from the leading example of Lipman (2003). We
defer the details to Appendix B.1.

6. RELATED LITERATURE AND CONCLUSIONS

In what follows, we discuss the related literature more closely (with the benefit of being
able to explain some of the ideas more formally with our notation). Finally, we conclude.

The literature on the aggregation of information in a population is perhaps far too vast
to cite comprehensively. Multiple strands attempt to understand, in a variety of settings,
when and how existing institutions aggregate dispersed information in strategic settings.
These include studies on information aggregation in voting, a vast literature with its roots
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in Condorcet, but more recently studied formally starting from Feddersen and Pesendor-
fer (1997); aggregation in auctions (see e.g., Milgrom and Weber (1982) and subsequent lit-
erature) and of course information aggregation in markets (see e.g., Grossman and Stiglitz
(1980)). Ostrovsky (2009) proposes a market scoring rule mechanism that achieves infor-
mation aggregation for some classes of securities in a dynamic market, but the payment
rule there requires the state to be ex-post observable.

We limit attention here explicitly to work that studies the design/ possibility of aggre-
gation procedures/ algorithms, or institutions that solely exist to aggregate information.

A key idea in the former space (indeed, in a sense an idea that is also at the heart of
Prelec, Seung, and McCoy (2017)) is the Bayesian Truth Serum (Prelec (2004)— this is a
procedure to truthfully elicit subjective information from agents by rewarding them as a
function of others’ reports. This paper pioneered the idea that agents’ higher-order be-
liefs could be used to incentivize them successfully even if the planner/ designer did not
know the prior among agents. A literature studying this followed. Prelec and Seung
(2006) showed how to modify agents’ reports to aggregate them better (akin to the pre-
diction normalized voting rule we described in Example 1). Several extensions to the BTS
have been proposed— see e.g., Cvitanić, Prelec, Riley, and Tereick (2019), Witkowski and
Parkes (2012), Radanovic and Faltings (2013), and Radanovic and Faltings (2014). The
latter three papers attempt to make the basic Bayesian Truth Serum robust, i.e., to ensure
that it has good properties even in finite populations and to ensure that participation is
individually rational, etc. More recent work has also expanded the scope of the question
to continuous spaces, but with more structure—see, e.g., Kong, Schoenebeck, Tao, and Yu
(2020).

These ideas have also been successfully employed in real-world applications: see e.g.,
Shaw, Horton, and Chen (2011) for an application on Mechanical Turk, or Rigol, Hus-
sam, and Roth (2021), who use the Robust BTS of Witkowski and Parkes (2012) to identify
high-ability micro-entrepreneurs by surveying peers. There is also a growing literature
attempting to elicit and use higher-order beliefs to improve aggregation—see e.g., recent
works such as Palley and Soll (2019), Palley and Satopää (2020). Some of these works
consider modifications of the SP algorithm that improve performance in experiments,
e.g., Wilkening, Martinie, and Howe (2021) or Martinie, Wilkening, and Howe (2020). For
example, Wilkening, Martinie, and Howe (2021) show that opposite to SP, SC weights
forecasters with more informative private signals more than forecasters with less infor-
mative ones. This explains why SC is favorable relative to SP when both guess/vote and
posterior data are available. Similarly, McCoy and Prelec (0) use Bayesian Hierarchical
methods to improve performance relative to SP.

On the latter, there is an important literature which has attempted to understand the
performance of prediction markets: see e.g., Wolfers and Zitzewitz (2004) for an early
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piece summarizing the issues and Baillon (2017) for an alternate design. Wolfers and
Zitzewitz (2006) study when the prediction market price can be interpreted as the aver-
age of traders’ beliefs, while Ottaviani and Sørensen (2015) study when the market price
under-reacts to new information. Dai, Jia, and Kou (2020) show how to infer the state
of the world from prediction market trading data using these theoretical ideas. There
is also a large literature on pari-mutuel markets, and on adapting them to aggregate
information—see e.g., Pennock (2004).

As we mentioned in footnote 3, our approach has some similiarities with Theorem 1.4
of Prelec, Seung, and McCoy (2017). This approach require elicitation of p(si|sj), i.e. the
conditional probability that a different agent has seen signal si given that you have seen
sj. In particular this requires that the subjects understand the meaning of signals (H and T
in their example). In contrast, PMBA questions are all in terms of primitives (beliefs and
higher-order beliefs) of an agent. Our position is that this distinction is important because
if the subjects really understand the model/prior including meaning of signals, the easiest
question is to simply ask them for the state-contingent population signal distribution (i.e.
the bias of the various possible coins in the terminology of PSM).

A different approach to ours for aggregating information with more than 2 states can
be found in Libgober (2021). The principal does not know the agent’s prior, but can elicit,
after an unknown Blackwell experiment, their posterior and their contingent hypothet-
ical beliefs (their posteriors contingent on seeing any signal). He shows that the prior
and experiment can be recovered from these contingent hypothetical beliefs, via a linear-
regression method, even if some signals are not sampled (i.e. µ need not be a square ma-
trix). In contrast, Prelec and McCoy (2022), following Samet (1998b), propose to identify
contingent hypothetical beliefs with a transition matrix on signals. An invariant distribu-
tion of the matrix corresponds to the ex-ante population signal distribution and thereby
delivers the unknown the information structure. At a technical level, our “expected popu-
lation average beliefs” serve a similar role to the “contingent hypothetical beliefs” in these
papers. However, the contingent hypothetical beliefs include information about higher-
order beliefs well beyond the expected population mean; moreover, both Libgober (2021)
and Prelec and McCoy (2022) require that the agents share a common prior and thereby
rule out misspecified information settings (Procedure 3).

On a related theme, there are the works of Samet (1998a), Samet (1998b), and Golub and
Morris (2017). These papers are interested in interim characterizations of the common
prior, i.e., understanding whether or not agents have a common prior from the properties
of their interim beliefs/higher-order beliefs.
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APPENDIX A. PROOFS FROM SECTION 2

First we prove a general property:
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LEMMA 1. Suppose Part (2) of Assumption 1 is satisfied. Then for any state ω,

lim
n→∞

1
n

∞

∑
i=1

µ̃i →P µ(ω).

PROOF. The result is established in two steps. For any state ω below, we show that agents’
beliefs that the state is ω′ ∈ Ω satisfy vanishing correlation. As beliefs lie in [0, 1] and
therefore have bounded variance, we can apply the Bernstein law of large numbers. To-
gether, these imply that when the state of the world is ω; for any state ω′ ∈ Ω, we have
that:

lim
n→∞

1
n

∞

∑
i=1

µ̃i,ω′ →P µω′(ω).

Since there are only a finite set of states, the main result follows.
First, let us prove our claim of vanishing correlations:

CLAIM 2. Conditioned on state ω ∈ Ω, the sequence of (random) beliefs ⟨µ̃i,ω′⟩∞
i=1 that the state

of the world is any ω′ ∈ Ω satisfies vanishing correlation, i.e.,

lim
|i−j|→∞

cov(µ̃i,ω′ , µ̃j,ω′ |ω) = 0.

PROOF OF CLAIM. Consider agents i and j such that ε-independence among signals holds,
i.e., for all events E, E′ ∈ F we have

|P
[
s̃i ∈ E, s̃j ∈ E′|ω

]
− PS

i,ω(E)PS
j,ω(E′)| ≤ ε.

Let fi denote the conditional probability function that assigns Bayesian beliefs of state ω′

to signals for agent i. By measurability of fi’s we have that every event S, S′ ⊆ [0, 1] has a
corresponding event f−1

i (S) and f−1
j (S′) such that∣∣∣Pr

[
µ̃i,ω′ ∈ S, µ̃j,ω′ ∈ S′ |ω

]
− Pr [µ̃i,ω′ ∈ S |ω ]Pr

[
µ̃j,ω′ ∈ S′ |ω

]∣∣∣
=
∣∣∣P [s̃i ∈ f−1

i (S), s̃j ∈ f−1
j (S′) |ω

]
− PS

i,ω( f−1
i (S))PS

j,ω( f−1
j (S′))

∣∣∣
establishing approximate independence of beliefs, conditional on the state.

To establish state dependent vanishing correlation among beliefs, consider the random
beliefs µ̃i,ω′ , µ̃j,ω′ . For any number n > 1, let Gn denote a partition of [0, 1] into n + 1 equal
intervals, i.e., Gk

n = [ k−1
n , k

n ) for k = 1 thru n − 1; Gn
n = [n−1

n , 1].
Note that:

E[µ̃i,ω′ |ω] ≤
n

∑
k=1

k
n

Pr(µ̃i,ω′ ∈ Gk
n|ω) ≡ Un

i ,

E[µ̃j,ω′ |ω] ≤
n

∑
k=1

k
n

Pr(µ̃j,ω′ ∈ Gk
n|ω) ≡ Un

j ,
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E[µ̃i,ω′ µ̃j,ω′ |ω] ≤
n

∑
l=1

n

∑
k=1

lk
n

Pr(µ̃i,ω′ ∈ Gl
n, µ̃j,ω′ ∈ Gk

n|ω) ≡ Un
ij.

Since µ̃i,ω′ and µ̃j,µ̃′ satisfy ε-independence, we have that

|Un
ij − Un

i Un
j | ≤ ε.

However, as n goes to infinity, by observation, Un
i → E[µ̃i,ω′ |ω], Un

j → E[µ̃j,ω′ |ω] and
Un

ij → E[µ̃i,ω′ µ̃j,ω′ |ω]. Therefore cov(µ̃i,ω′ , µ̃j,ω′ |ω) ≤ ε.
Now, by part (2) of Assumption 1, we know that for any i, and ε > 0, ∃n(ε) large enough

so that if j − i > n so that we have that conditional on state, µ̃i and µ̃j are ε-independent.
The result trivially follows. ■

Now, recall the Bernstein law of large numbers (See e.g 3.3.2 of Shiryaev (2012)):

THEOREM 5. Let X̃i, i = 1, 2, 3 . . . be a sequence of real valued random variables such that
(1) E[X̃i] is finite for each i, (2) there exists K finite such that V[X̃i] ≤ K for all i, and (3)
lim|i−j|→∞ cov(X̃i, X̃j) = 0. Then

lim
n→∞

1
n

n

∑
i=1

(
X̃i − E[X̃i]

)
→P 0.

Observe that since µ̃i,ω′ is a belief, it lies between [0, 1] and so the first two conditions
of the Theorem are verified. Claim 2 verifies the third condition conditional on any true
state ω. Therefore we have the desired result for any ω′ ∈ Ω, conditional on true state ω.
Since the set of states is finite, we have convergence in probability of the entire vector. ■

LEMMA 2. Suppose L = 2. Suppose further that part (1) of Assumption 1 holds and PS
i,ω1

̸=
PS

i,ω2
. Then following statements hold:

(1)
Ĝi,ω1

(r)
Ĝi,ω2 (r)

is non-increasing in r

(2)
Ĝi,ω1

(r)
Ĝi,ω2 (r)

> 1 for all r ∈
(

β, β̄
)

where
[

β, β̄
]

denote the convex hull of the support of private

beliefs.18

(3) µi(ω1) < µi(ω2).

PROOF. By Bayes’ rule, we know that

r =
dGi,ω2 (r) P (ω2)

dGi,ω1 (r) P (ω1) + dGi,ω2 (r) P (ω2)
. (7)

18Since signal generating measures are absolutely continuous each other, the support is identical across
states.
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We define α = P(ω2)/P(ω1) as the relative likelihood of the states according to the prior
P. Since no signal is completely informative, i.e., r /∈ {0, 1}, we can rewrite (7) as

dGi,ω1

dGi,ω2

(r) =
(

1 − r
r

)
α. (8)

Hence, for any r ∈ (0, 1), we have

Gi,ω1 (r) =
∫ r

0
dGi,ω1 (x) =

∫ r

0

(
1 − x

x

)
αdGi,ω2 (x) ≥

(
1 − r

r

)
αGi,ω2 (r) . (9)

Part (1). Pick any r′, r s.t. r′ > r.Observe that:

Gi,ω1(r)
Gi,ω2(r)

−
Gi,ω1(r

′)

Gi,ω2(r′)
,

=
Gi,ω1(r)Gi,ω2(r

′)− Gi,ω1(r
′)Gi,ω2(r)

Gi,ω2(r)Gi,ω2(r′)
.

Define ∆i,ω = Gi,ω(r′)− Gi,ω(r). We then have:

=
Gi,ω1(r)∆i,ω2 − ∆i,ω1 Gi,ω2(r)

Gi,ω2(r)Gi,ω2(r′)
,

Observe that ∆i,ω1 =
∫ r′

r dGi,ω1(x) =
∫ r′

r

(
1−x

x

)
αdGi,ω2 (x) ≤

(
1−r

r

)
α∆i,ω2 . Substituting

in,

≥
Gi,ω1(r)∆i,ω2 −

1−r
r α∆i,ω2 Gi,ω2(r)

Gi,ω2(r)Gi,ω2(r′)
,

≥0,

where the last inequality follows by substituting in Gi,ω1(r) in the numerator from (9).
Part (2). It follows from (9) that

Gi,ω1 (r) ≥ Gi,ω2 (r) if
(

1 − r
r

)
α ≥ 1. (10)

If
(

1−r
r

)
α < 1, then

1 − Gi,ω1 (r) =
∫ 1

r
dGi,ω1 (x)

=
∫ 1

r

(
1 − x

x

)
αdGi,ω2 (x)

≤
(

1 − r
r

)
α
(
1 − Gi,ω2 (r)

)
≤ 1 − Gi,ω2 (r) . (11)
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Combining (10) and (11), we obtain that

Gi,ω1 (r)
Gi,ω2 (r)

≥ 1. (12)

To prove
Gi,ω1 (r)
Gi,ω2 (r)

> 1 for any r ∈
(

β, β
)

, suppose to the contrary that
Gi,ω1 (r)
Gi,ω2 (r)

= 1 for

some r ∈
(

β, β
)

. We derive contradiction in each of the following two cases

Case 1:
(

1−r
r

)
α < 1. Then,

Gi,ω1 (1) = Gi,ω1 (r) +
∫ 1

r
dGi,ω1 (x)

= Gi,ω2 (r) +
∫ 1

r
dGi,ω1 (x)

= Gi,ω2 (r) +
∫ 1

r

(
1 − x

x

)
αdGi,ω2 (x)

≤ Gi,ω2 (r) +
(

1 − r
r

)
α
∫ 1

r
dGi,ω2 (x)

= Gi,ω2 (r) +
(

1 − r
r

)
α
[
1 − Gi,ω2 (r)

]
which yields a contradiction unless Gi,ω2 (r) = 1. However, Gi,ω2 (r) = 1 implies

r ≥ β which contradicts r ∈
(

β, β
)

.

Case 2:
(

1−r
r

)
α ≥ 1 . Then, since

Gi,ω1 (r)
Gi,ω2 (r)

= 1 and
Gi,ω1 (r)
Gi,ω2 (r)

is non-increasing in r,

together with (12) implies that
Gi,ω1 (r

′)

Gi,ω2 (r
′) = 1 for all r′ ≥ r. Pick r′ > α

1+α (note that

since α
1+α is just the prior belief that ω1 = 1, it must be in the interior of the support

of beliefs [β, β̄]—this leads to the contradiction in Case 1.

Part (3). This follows directly from the first-order stochastic dominance relationship be-
tween Gi,ω1 and Gi,ω2 in established part (2). ■

LEMMA 3. Suppose L = 2 and the common prior P satisfies both Assumptions 1 and 2. Then,
there exists an ε > 0 such that the µi(ω1) + ε < µi(ω2) for all i ∈ N.

PROOF. Fix any agent i and let the convex hull of the common support of its posteriors
be [β, β]. First observe that the prior belief about the state is α

1+α . Therefore it must be
that β < α

1+α < β (if exactly one of these is an equality we violate the condition that
the expected posterior is the prior, if both are equalities then the signal is uninformative
violating Assumption 2.
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CLAIM 3. For δ > 0 if the total variation distance between Gi,ω1 and Gi,ω2 is larger than δ, there
exists δ′ > 0 such that β + δ′ < α

1+α < β − δ′, and further

max
{

Gi,ω1(
α

1 + α
− δ′), (1 − Gi,ω2(

α

1 + α
+ δ′)

}
≥ δ′.

PROOF. To see this observe that we showed in the proof of Lemma 2 that for any r ̸∈
{0, 1}, we have

dGi,ω1

dGi,ω2

(r) =
(

1 − r
r

)
α.

Therefore for r arbitrarily close to α
1+α ,

dGi,ω1
dGi,ω2

(r) is arbitrarily close to 1. Further, by the

fact that Gi,ω2 first order stochastically dominates Gi,ω1 , we have δ′ > Gi,ω1(
α

1+α − δ′) >

Gi,ω2(
α

1+α − δ′), and similarly δ′ > (1 − Gi,ω2(
α

1+α + δ′) > (1 − Gi,ω1(
α

1+α + δ′)

Therefore if the claim is not satisfied, both measures are mostly supported on [ α
1+α −

δ′, α
1+α + δ′] the total variation distance is ≤ 21+α

α δ′2 + 2δ′. Therefore the claim follows for
e.g., δ′ = 1

3 δ. ■

Now observe that µi(ω) =
∫ 1

0 (1 − Gi,ω(r))dr. Therefore

µi(ω2)− µ(ω1)

=
∫ 1

0
(Gi,ω1(r)− Gi,ω2(r))dr

We showed in Lemma 2 that Gi,ω2 first order stochastically dominates Gi,ω1 . Therefore we
have, for δ′ that satisfies the statement of the claim above,

≥
∫ α

1+α

α
1+α−δ′

(Gi,ω1(r)− Gi,ω2(r))dr

=δ′(Gi,ω1(
α

1 + α
− δ′)− Gi,ω2(

α

1 + α
− δ′))

+
∫ α

1+α

α
1+α−δ′

(∫ r

α
1+α−δ′

(dGi,ω1(x)− dGi,ω2(x))

)
dr

We know from (8) that dGi,ω1(r) > dGi,ω2(r) for r < α
1+α . So we have,

≥δ′(Gi,ω1(
α

1 + α
− δ′)− Gi,ω2(

α

1 + α
− δ′)).

Now observe that by (9) we have

Gi,ω1(r) ≥
1 − r

r
αGi,ω2(r),

=⇒ Gi,ω1(r)− Gi,ω2(r) ≥
(

1 − r
r

α − 1
)

Gi,ω2(r).
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For r = α
1+α − δ′ we have

=⇒ Gi,ω1(
α

1 + α
− δ′)− Gi,ω2(

α

1 + α
− δ′) ≥ δ′(α + 1)2

α − (α + 1)δ′
Gi,ω2(

α

1 + α
− δ′).

However we also have by the statement of the claim that

Gi,ω1(
α

1 + α
− δ′) ≥ δ′,

=⇒ Gi,ω1(
α

1 + α
− δ′)− Gi,ω2(

α

1 + α
− δ′) ≥ δ′ − Gi,ω2(

α

1 + α
− δ′).

Combining, we have that

≥ max{δ′ − Gi,ω2(
α

1 + α
− δ′),

δ′(α + 1)2

α − (α + 1)δ′
Gi,ω2(

α

1 + α
− δ′)}

Note that the first term is decreasing in Gi,ω2(
α

1+α − δ′), while the second is increasing.
Therefore, the minimum is achieved at

δ′ − Gi,ω2(
α

1 + α
− δ′) =

δ′(α + 1)2

α − (α + 1)δ′
Gi,ω2(

α

1 + α
− δ′)

=⇒ Gi,ω2(
α

1 + α
− δ′) =

α − (α + 1)δ′

α + αδ′(α + 1)
δ′

Substituting in we have that,

Gi,ω1(
α

1 + α
− δ′)− Gi,ω2(

α

1 + α
− δ′) ≥ δ′(α + 1)2

α + αδ′(α + 1)
δ′,

and therefore we have that µi(ω2)− µi(ω1) ≥ ε for ε = δ′(α+1)2

α+αδ′(α+1)δ′2. ■

We are now finally in a position to give the proof of Theorem 1.

THEOREM 1. Suppose the information structure among agents satisfies Assumptions 1 and 2.
Then the PMBA procedure (Procedure 1) correctly recovers the true state of the world almost
surely.

PROOF OF THEOREM 1. We prove this by analyzing each of the steps of Procedure 1.

(1) By Lemma 1, the law of large numbers holds and when the realizes state is ω,

lim
n→∞

1
n

n

∑
i=1

µ̃i = µ(ω).

Therefore the population mean of the elicited beliefs µ̂ in Step (1) of the procedure
equals µ(ω) in state ω.

(2) By part (1) of Assumption 1, we know that the beliefs of any agent i have a com-
mon support across the states. Further, by Assumption 2, this support must have
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at least 2 distinct points in it. Combining this with the fact that signals are approx-
imately independent, there must exist at least two agents with different beliefs
almost surely. So step 2 can find 2 such agents. Further, in step 2, each agent
i = A, B will report, by the law of total probability: αi = µiµ(ω1) + (1 − µi)µ(ω2).

(3) Since µA ̸= µB, equation 1 can be solved.
(4) By Lemma 3, there is a ε > 0 such that for all i µi(ω1) < µi(ω2)− ε. Therefore, the

expected poptulation average beliefs, µ(ω1) < µ(ω2)− ε, i.e., µ(ω1) ̸= µ(ω2).
Therefore comparing the elicited µ̂ in step (1) with the recovered (µ(ω1), µ(ω2))

must reveal the true state. ■

THEOREM 2. Suppose L > 2 and the common prior P satisfies Assumptions 1, 3, and 4. Then
the PMBA procedure (Procedure 2) recovers the true unknown state of nature ω almost surely.

PROOF. We prove this by analyzing each of the steps of Procedure 2 analogously to our
proof of Theorem 1.

(1) By Lemma 1, the law of large numbers holds and when the realizes state is ω,

lim
n→∞

1
n

n

∑
i=1

µ̃i = µ(ω).

Therefore the population mean of the elicited beliefs µ̂ in Step (1) of the procedure
equals µ(ω) in state ω.

(2) By part (1) of Assumption 1, we know that the beliefs of any agent i have a com-
mon support across the states. Further, by Assumption 4, this support must has an
interior relative to ∆L. Combining this with the fact that signals are approximately
independent, there must exist at least L agents whose beliefs form a full rank ma-
trix a.s.. So step 2 can find L such agents. Further, in step 2, each agent i ∈ I will
report, by the law of total probability: αi = µT

i µ̄.
(3) Since the set I of agents is selected so that µ is full-rank, equation 2 can be solved.
(4) By Assumption 3, µ(ω) ̸= µ(ω′) for any ω, ω′ ∈ Ω.

Therefore comparing the elicited µ̂ in step (1) with the recovered µ̄ must reveal the
true state. ■

CLAIM 1. Suppose that signals are conditionally i.i.d. draws from a finite set S, and Assumption 3
is satisfied. If each agent gets L− 1 independent draws from the distribution PS

ω, then Assumption
4 is satisfied with the signal space SL−1.

PROOF. At each ω, the distribution of the L − 1 signals can be summarized by the outer
product (

⊗PS
ω

)L−1
= PS

ω ⊗ · · · ⊗ PS
ω︸ ︷︷ ︸

L−1 times

.
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Since Assumption 3 is satisfied, the dimension of the linear space spanned by
{

PS
ω

}
ω∈Ω is

at least 2. Hence, by Lemma 4 by Fu, Haghpanah, Hartline, and Kleinberg (2021),
{(

⊗PS
ω

)L−1
}

ω∈Ω

are linearly independent and hence
{(

⊗PS
ω

)L−1 P (ω)
}

ω∈Ω
are also linearly indepen-

dent (P (ω) denotes the prior probability of ω). Identify
{(

⊗PS
ω

)L−1 P (ω)
}

ω∈Ω
with

a |S|L−1 × L matrix which we denote by M. Hence, rank(M) = L. For s =
(
s1, ..., sL−1)

and ω ∈ Ω, observe that Ms,ω = P (s, ω). Since rank(M) = L, the conditional probability
matrix {P (ω|s)} also has rank L. Hence, Assumption 4 is satisfied with the signal space
SL−1. ■

A.1. Proof of Theorem 3

We first need some more lemmata.

LEMMA 4. Let µ̃A,µ̃B denote the random group mean beliefs and µA, µB their expectation. We
have that µ̃A(respectively, µ̃B) converges in probability to the expectation µA(respectively, µB).

PROOF. Let xiA,xiB denote the indicator random variable of i belonging to group A,B,
and let µi denote the random belief of agent i. We have that

µ̃A = lim
n∈N

1
∑

i<n
xiA

∑
i<n

xiAµi = lim
n∈N

1
1
n ∑

i<n
xiA

1
n ∑

i<n
xiAµi.

Let

Ln =
1

1
n ∑

i<n
xiA

, and, Kn =
1
n ∑

i<n
xiAµi.

Note that since the conditions for Bernstein’s LLN are satisfied for the sequences ⟨xiA⟩
and ⟨xiAµi⟩ conditional on the realized state, it follows that ⟨Ln⟩ and ⟨Kn⟩ converge in
probability to L respectively K where

L = lim
n∈N

E[Ln], K = lim
n∈N

E[Kn].

Since ⟨Ln⟩ and ⟨Kn⟩ are uniformly bounded, it follows that µ̃A converges in probability
to µA

µA = lim
n∈N

1

E
[

1
n ∑

i<n
xiA

]E

[
1
n ∑

i<n
xiAµi

]
,

and analogously µ̃B converges in probability to µB. ■

37



CHEN, MUELLER-FRANK, AND PAI

LEMMA 5. Let α̃A, α̃B denote the groups random population beliefs. We have that α̃A, α̃B converge
in probability to

µAµ̂1 + (1 − µA)µ̂
2, µBµ̂1 + (1 − µB)µ̂

2,

where µ̂1 = µ̄(ω1) + E[ζ1], µ̂2 = µ̄(ω2) + E[ζ2].

PROOF. Note that

αA = lim
n∈N

1
1
n ∑

i<n
xiA

1
n ∑

i<n
xiA

(
µiµ̄(ω1) + (1 − µi)µ̄(ω2) + µiζ

1
i + (1 − µi)ζ

2
i

)
.

By Lemma 4, we have that:

1
1
n ∑

i<n
xiA

1
n ∑

i<n
xi (µiµ̄(ω1) + (1 − µi)µ̄(ω2)) →P µAµ̄(ω1) + (1 − µA)µ̄(ω2).

For the random term
1

1
n ∑
i<n

xiA

1
n ∑

i<n
xiA

(
µiζ

1
i + (1 − µi)ζ

2
i

)

let, Ln =
1

1
n ∑

i<n
xiA

, and, K̂n =
1
n ∑

i<n
xiA

(
µiζ

1
i + (1 − µi)ζ

0
i

)
.

Since the sequences of random variables ⟨xiA⟩ ,
〈

xiAµiζ
1
i
〉

and
〈

xiAµiζ
2
i
〉

satisfy the con-
ditions of the Bernstein LLN (conditional on the state ω), it follows that ⟨Ln⟩ and

〈
K̂n
〉

converge in probability to L respectively K̂ where

L = lim
i∈N

E

 1
1
n ∑

i<n
xiA

 and, K̂ = lim
i∈N

1
n ∑

i<n
E
[

xiAµiζ
1
i

]
+ E

[
xiA(1 − µi)ζ

2
i

]
.

By independence of error terms and first-order beliefs this equals it follows that

K̂ = lim
i∈N

E[ζ1]

(
1
n ∑

i<n
E [xiAµi]

)
+ E[ζ2]

(
1
n ∑

i<n
E [xiA(1 − µi)]

)
.

Since ⟨Ln⟩ and
〈
K̂n
〉

are uniformly bounded, and by Lemma 4 it follows that the random
term

1
1
n ∑
i<n

xiA

1
n ∑

i<n
xiA

(
µiζ

1
i + (1 − µi)ζ

2
i

)
converges in probability, and the claim follows, i.e., α̃A converges in probability to

µAE[ζ1] + (1 − µA)E[ζ2]

concluding the proof. ■
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We are now in a position to provide a proof of the main theorem, Theorem 3 (restated
below for the reader’s convenience).

THEOREM 3. Suppose the true signal distribution process satisfies Assumptions 1 and 2, and
that the agents’ knowledge regarding the information structure satisfies Assumption 5. Suppose
further that ∣∣∣E[ζ1]

∣∣∣+ ∣∣∣E[ζ2]
∣∣∣ < µ̄ (ω1)− µ̄ (ω2) . (5)

Then, Misspecified Information Population-Mean-Based Aggregation (Procedure 3) cor-
rectly recovers the true state of the world almost surely.

PROOF. From above, we have that

µ̂1 = µ̄(ω1) + E[ζ1]

µ̂2 = µ̄(ω2) + E[ζ2].

We need to show that
|µ̂ω − µ̄(ω)| < |µ̂¬ω − µ̄(ω)|

for ω = ω1, ω2. Consider the case of ω1. Note that by Lemma 5 we have∣∣∣µ̂1 − µ̄(ω1)
∣∣∣ = ∣∣∣E[ζ1]

∣∣∣ .

For the correct identification of state ω1 we thus require that∣∣∣µ̂2 − µ̄(ω1)
∣∣∣ > ∣∣∣E[ζ1]

∣∣∣ .

By Lemma 5 it follows that∣∣∣µ̂2 − µ̄(ω1)
∣∣∣ = ∣∣∣µ̄(ω1)− µ̄(ω2)− E[ζ2]

∣∣∣ .(∗)

Assuming that ∣∣∣E[ζ2]
∣∣∣+ ∣∣∣E[ζ1]

∣∣∣ < µ̄(ω1)− µ̄(ω2)

and plugging into equation (∗) yields∣∣∣µ̂2 − µ̄(ω1)
∣∣∣ > ∣∣∣∣∣∣E[ζ2]

∣∣∣+ ∣∣∣E[ζ1]
∣∣∣− E[ζ2]

∣∣∣ ≥ ∣∣∣E[ζ1]
∣∣∣

which establishes correct identification of state ω1. The argument for the correct identifi-
cation of state ω2 is analogous. ■

APPENDIX B. PROOFS FROM SECTION 5

THEOREM 4. Suppose that µ̃ has a finite support and the agents report s̃ = (s̃i)i. Then there
exists a procedure which recovers the “pooled information” posterior on the states, i.e., P̃(·|s̃).
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PROOF. Assume that margS̃µ̃ (s̃) > 0. It follows from Theorem III.2.7 of Mertens, Sorin,
and Zamir (2015) that the aggregator can derive:

(1) The set E (s̃) which is the smallest set Y ⊆ Ω × S̃ of state-hierarchy profiles satis-
fying
(a) (ω, s̃) ∈ Y for some ω ∈ Ω, and,
(b) for each (ω, t̃) ∈ Y, we have {t̃i}×supp π̃i (t̃i) ⊆ Y.

(2) The unique consistent probability µ̃ on E (s̃).

With (1) and (2), the aggregator can compute µ̃ (·|s̃). We recap and illustrate both (1) and
(2) for the ease of reference.

To construct (1), define C1
i (ω, t̃) = {t̃i}×suppπ̃i (t̃i) for each (ω, t̃) ∈ Ω × S̃; and in-

ductively, for every l ≥ 1 and t̃ ∈ S̃, define

Cl+1
i (ω, t̃) = Cl

i (ω, t̃)
⋃ ⋃

(ω′,t̃′)∈Cl
i (ω,t̃)

N⋃
j=1

C1
j
(
ω′, t̃′

)
.

Then, let

Ci (ω, t̃) =
∞⋃

l=1

Cl
i (ω, t̃) .

These include (ω, t̃), the state-hierarchy profiles which agent i regards as possible (i.e.,
C1

i (ω, t̃)) at (ω, t̃), the state-hierarchy profiles which some agent regards at some state-
hierarchy profile in C1

i (ω, t̃) (i.e., C2
i (ω, t̃)), and so on.

Consider any ω∗ such that µ̃ (ω∗, s̃) > 0. Note that Ci (ω
∗, s̃) satisfies properties (a)

and (b) above by construction and hence Ci (ω
∗, s̃) ⊇ E (s̃).19 Also we can argue that

Ci (ω
∗, s̃) ⊆ E (s̃) inductively.

For (2), it follows from Bayes’ rule that for every (ω′, t̃′) ∈ C1
i (ω, t̃) and µ̃ (ω, t̃) > 0,

we must have t̃i = t̃′i and hence

µ̃ (ω′, t̃′)
µ̃ (ω, t̃)

=
π̃i
(
t̃′i
)
(ω′, t̃′) µ̃i

(
t̃′i
)

π̃i (t̃i) (ω, t̃−i) µ̃i (t̃i)
=

π̃i
(
t̃′i
)
(ω′, t̃′)

π̃i (t̃i) (ω, t̃−i)
> 0.

The aggregator knows π̃i (t̃i) and hence can express µ̃ (ω′, t̃′) as a multiple of µ̃ (ω, t̃).
Inductively, for every (ω′, t̃′) ∈ Cl

i (ω, t̃), µ̃ (ω′, t̃′) can also be expressed as a multiple of
µ̃ (ω, t̃).

Hence, µ̃ is uniquely determined on E (s̃) = Ci (ω
∗, s̃) since µ̃ (ω∗, s̃) > 0. µ̃(·|s̃) can

thus be calculated. ■
19Property (b) is by construction and property (a) follows from the assumption that µ̃ (ω∗, s̃) > 0.
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B.1. Eliciting Higher-Order Beliefs up to a Finite Order m

We adopt his notation here for ease of comparison. Suppose there are two players and
two states of nature {ω1, ω2} as in our paper. The construction is easier to explain in
terms of the standard partitional model of knowledge.

The model below considers 8 extended states: {(σl, k) : l ∈ {1, 2} and k ∈ {1, 2, 3, 4}}.
Interpret state (σl, k) in this model as corresponding to ωl realized for l = 1, 2 and any k.
In this example, Lipman considers the hierarchy of belief induced by common knowledge
that player 1 assigns probability 2/3 to ω1 and player 2 assigns probability 1/3 to ω1.
Such a type does not admit a common prior. However, Lipman shows that the model
below, which has a uniform common prior, admits a state (σ1, 1) where the players have
the same belief as that of the common knowledge type described above, up to any finite
order m.

The prior for the players is the uniform distribution over the extended states, i.e.:

(σ1, 4) (σ1, 3) (σ2, 2) (σ1, 1) (σ2, 1) (σ1, 2) (σ2, 3) (σ2, 4)
µ 1

8
1
8

1
8

1
8

1
8

1
8

1
8

1
8

Agents’ information is identified with the following partitions:

Π1 = {{(σ1, 4) , (σ1, 3) , (σ2, 2)} {(σ1, 1) , (σ2, 1) , (σ1, 2)} {(σ2, 3) , (σ2, 4)}}

Π2 = {{(σ1, 4) , (σ1, 3)} {(σ2, 2) , (σ1, 1) , (σ2, 1)} {(σ1, 2) , (σ2, 3) , (σ2, 4)}} .

Note that each Πi (σ
′, k) is identified with a signal of player i. Observe that player 1

assigns probability one to ω2 at Π1 (σ2, 4) and player 2 assigns probability one to ω1 at
Π2 (σ1, 4). Hence, each partition cell of each player induces a different second-order be-
lief. In particular, (Π1 (σ1, 1) , Π2 (σ1, 1)) is the only partition profile at which the second-
order beliefs of both players are identical to t. Moreover, conditional on the reported
second-order belief at (Π1 (σ1, 1) , Π2 (σ1, 1)) (denoted as (Π1 (σ1, 1) , Π2 (σ1, 1))2), we have

µ (ω1| (Π1 (σ1, 1) , Π2 (σ1, 1))) =
1
2

.

Now consider another model modified from the previous one by adding one additional
state with the following prior:

(σ1, 4)′ (σ1, 3)′ (σ2, 2)′ (σ1, 1)′ (σ1, 1) (σ2, 1) (σ1, 2) (σ2, 3) (σ2, 4)
µ′ 1

20
1
20

1
10

1
10 0 1

10
1
5

1
5

1
5

where ′ is to indicate that a state is to the left of (σ1, 1) and it will be useful in generalizing
the idea to eliciting m orders of beliefs, for m ≥ 3 in what follows. Agents’ information is
now given by the partitions:

Π′
1 =

{{
(σ1, 4)′ , (σ1, 3)′ , (σ2, 2)′ , (σ1, 1)′

}
, {(σ1, 1) , (σ2, 1) , (σ1, 2)} {(σ2, 3) , (σ2, 4)}

}
;
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Π′
2 =

{{
(σ1, 4)′ , (σ1, 3)′

}
,
{
(σ2, 2)′ , (σ1, 1)′ , (σ1, 1) , (σ2, 1)

}
, {(σ1, 2) , (σ2, 3) , (σ2, 4)}

}
.

Observe now that, conditional on the reported second-order belief at (Π′
1 (σ1, 1) , Π′

2 (σ1, 1))
(denoted as (Π′

1 (σ1, 1) , Π′
2 (σ1, 1))2), we have

µ′
(

ω1|
(
Π′

1 (σ1, 1) , Π′
2 (σ1, 1)

)2
)
= 0.

Second, observe that(
Π′

1 (σ1, 1) , Π′
2 (σ1, 1)

)2
= (Π1 (σ1, 1) , Π2 (σ1, 1))2 .

This means that the reported second-order beliefs at (Π′
1 (σ1, 1) , Π′

2 (σ1, 1)) under µ′ are
the same as at (Π1 (σ1, 1) , Π2 (σ1, 1)) under µ. The basic idea is that in µ′, we “shift” the
probability which µ assigns to (σ1, 1) to the additional state (σ1, 1)′. This additional state
helps us preserve the first-order belief of player 2 at Π′

2 (σ1, 1) at 1/3, while we decrease
the probability (σ1, 4) to 0 to preserve the first-order belief of player 1 at Π′

1
(
(σ1, 4)′

)
. This

takes care of the states to the left of (σ1, 1). For states to the right, we double the prob-
ability of (σ2, 2), (σ2, 3), and (σ2, 4), so that the first-order belief of player 1 at Π′

1 (σ1, 1)
and the first-order belief of player 2 at Π′ are also preserved. Therefore, just eliciting the
first two orders of beliefs, we cannot distinguish between the model corresponding to µ

(under which the posterior would be that both states are equally likely), and µ′ (under
which the posterior would be that the state is ω2 for sure).

The construction for m > 2 is similar but more involved, see below.

B.2. Construction for m > 2

Similarly, we can generalize the construction in Section B.1 to the case with m ≥ 3 as
follows:

Π1 =
{{

{(σ1, 2k − 1) , (σ1, 2k) , (σ2, k)} : k = 1, ..., 2m−1
}

,
{(

σ2, 2m−1 + 1
)

, ...., (σ2, 2m)
}}

;

Π2 =
{{

{(σ2, 2k − 1) , (σ2, 2k) , (σ1, k)} : k = 1, ..., 2m−1
}

,
{(

σ1, 2m−1 + 1
)

, ...., (σ1, 2m)
}}

.

µ (σl, k) =
1

2m+1 , ∀l = 1, 2, ∀k = 1, 2, ..., 2m.

Without loss of generality, assume that m ≥ 3 is odd. Construct the new model as follows:

Π′
1 =


{(σ1, 1) , (σ2, 1) , (σ1, 2)} ,

{
(σ1, 1)′ , (σ2, 2)′ , (σ1, 3)′ , (σ1, 4)′

}
,{{

(σ1, 2k − 1)′ , (σ1, 2k)′ , (σ2, k)′
}

: k = 2n−1 + 1, ..., 2n and n = 3, 5, ..., m − 2
}

,{
{(σ1, 2k − 1) , (σ1, 2k) , (σ2, k)} : k = 2n−1 + 1, ..., 2n and n = 2, 4, ..., m − 1

}
,{(

σ2, 2m−1 + 1
)′ , ...., (σ2, 2m)′

}
 ;
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Π′
2 =


{
(σ1, 1) , (σ2, 1) , (σ1, 1)′ , (σ2, 2)′

}
,{{

(σ2, 2k − 1)′ , (σ2, 2k)′ , (σ1, k)′
}

: k = 2n−1 + 1, ..., 2n and n = 2, 4, ..., m − 1
}

,{
{(σ2, 2k − 1) , (σ2, 2k) , (σ1, k)} : k = 2n−1 + 1, ..., 2n and n = 1, 3, ..., m − 2

}
,{(

σ1, 2m−1 + 1
)

, ...., (σ1, 2m)
}

 .

As in the case of m = 2, we start from the partition cells {(σ1, 1) , (σ2, 1) , (σ1, 2)} and{
(σ1, 1) , (σ2, 1) , (σ1, 1)′ , (σ2, 2)′

}
which contain (σ1, 1). The states with ′ are those “to the

left” of (σ1, 1), whereas the states without ′ are like those “to the right” of (σ1, 1). We
can then mimic the idea for m = 2 to solve for a prior µ′ with the desired properties as
follows:

(1) Again, for x > 0, set

µ′ (σ1, 1) = 0 and µ′ (σ2, 1) = µ′ (σ1, 1)′ = µ′ (σ2, 2)′ = x.

(2) The number of states with ′ excluding (σ1, 1)′ and (σ2, 2)′ (i.e., states in Π2 (σ1, k)′ where
k = 2n−1 + 1, ..., 2n and n = 2, 4, ..., m − 1) is :

y ≡ 3 ×
(

21 + 23 + · · ·+ 2m−2
)

,

i.e., y = 2m − 2.

We assign probability x
2 to each of these “left” states.

(3) The number of states without ′ excluding (σ1, 1) and (σ2, 1) (i.e., (σ2, 2) and states
in Π1 (σ2, k) where k = 2n−1 + 1, ..., 2n and n = 2, 4, ..., m − 1) is:

1 + 3 ×
(

21 + 23 + · · ·+ 2m−2
)
= y + 1.

We assign probability 2x to each of the “right” states.
(4) Hence for the total probability to sum to 1, we must have:

3x + y
x
2
+ (y + 1)2x = 1,

=⇒ x =
2

10 + 5y
,

=⇒ x =
1

5 × 2m .

In summary, observe that as desired, we have that

µ
(
ω1| (Π1 (σ1, 1) , Π2 (σ1, 1))m) =

1
2

.

µ′
(

ω1|
(
Π′

1 (σ1, 1) , Π′
2 (σ1, 1)

)m
)

= 0.(
Π′

1 (σ1, 1) , Π′
2 (σ1, 1)

)m
= (Π1 (σ1, 1) , Π2 (σ1, 1))m .
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Clearly, we can flip left and right to construct another model Π′′
1 and Π′′

2 with

µ′
(

ω1|
(
Π′′

1 (σ1, 1) , Π′′
2 (σ1, 1)

)m
)

= 1;(
Π′′

1 (σ1, 1) , Π′′
2 (σ1, 1)

)m
= (Π1 (σ1, 1) , Π2 (σ1, 1))m .

The construction here makes use of the feature that all higher-order beliefs of the com-
mon knowledge hierarchy t are degenerate. More precisely, this feature ensures that in
“shifting” out the probability which µ assigns to (σ1, 1), we can preserve the higher-order
beliefs of Π1 (σ1, 1) and Π2 (σ1, 1) as long as we can preserve the first-order belief at every
partition cell except for Π1 (σ2, 2m) and Π2 (σ1, 2m)′.

APPENDIX C. COUNTEREXAMPLES TO SP/ SC FOR MULTIPLE STATES

EXAMPLE 1. Suppose there are three states Ω = {ω1, ω2, ω3}, and three signals S = {s1, s2, s3}.
All agents have the initial uniform prior. Agents have a uniform prior over signals and receive
conditionally i.i.d. signals, conditional on the state, so that their posteriors can be described as:

P(ω1|·) P(ω2|·) P(ω3|·)
s1 0.4 0.21 0.39
s2 0.45 0.54 0.01
s3 0.44 0.06 0.5

i.e., the ith row and jth column is the posterior the agent places on ωj upon signal si, P(ωj|si).
Note that this violates the assumption of “diagonal dominance”— P(ω1|s2) > P(ω1|s1), i.e., an
agent who sees s2 (or, indeed s3) places a higher posterior on ω1 than an agent who sees signal s1.
However note that an agent who sees signal si believes that ωi is the most likely state.

To be clear, note that this can be achieved by the following distribution of signals conditional on
the state (numbers rounded):

P(·|ω1) P(·|ω2) P(·|ω3)

s1 0.31 0.259 0.433
s2 0.349 0.667 0.011
s3 0.341 0.074 0.556

This results, by mechanical calculation, on the following average beliefs in the population:

µ(ω1) µ(ω2) µ(ω3)

ω1 0.431 0.436 0.422
ω2 0.274 0.419 0.130
ω3 0.295 0.145 0.447

here the ith row and and jth column represent the average belief in the population that the state is
ωi when the true state is ωj.
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Note that the resulting expected population average belief is:

α(s1) α(s2) α(s3)

ω1 0.429 0.434 0.427
ω2 0.248 0.351 0.211
ω3 0.323 0.215 0.362

i.e., the column labeled α(si) is the expected population average belief of an agent seeing signal si.
More generally, we can summarize the set of “surprisingly popular” state(s) in each case as:

ω1 ω2 ω3

α(s1) ω1, ω2 ω1, ω2 ω3

α(s2) ω3 ω1, ω2 ω3

α(s3) ω1, ω2 ω1, ω2 ω3

i.e., the entry in row i corresponding to α(si) and column j corresponding to state ωj is the set of
states that are surprisingly popular, in true state ωj, relative to the expected population average
beliefs of an agent who received signal si. The underlined entry, if there are multiple, is the one
which is surprising by the largest magnitude. For example, relative to an agent seeing s1 in
true state ω1, both ω1 and ω2 are surprisingly popular, but ω2 is the most surprisingly popular:
(0.274 − 0.248 = 0.028 > 0.02 = 0.431 − 0.429).

Note that in our example, the “most surprisingly popular” procedure fails to identify the true
state when the state is ω1, regardless of the signal of who is polled for their expectation about the
population average beliefs. Indeed, if an agent who saw signal s2 is polled, the true state is not even
in the set of surprisingly popular states. Note also the failure of first-order stochastic dominance of
population average beliefs in this 3-state example—as we argued earlier, that was key to why SP
works with binary states, but this can be violated with three or more states.

Another closely related approach proposed is that of “prediction normalized votes” (see Section
1.3 of the Supplementary appendix of Prelec, Seung, and McCoy (2017)): each agent votes for the
state they believe is more likely (which, in this example, was the signal they saw, i.e., an agent
votes for state ωi if they see signal si). The fraction of votes each state ωj receives is normalized by
the sum, over all states ωk, the ratio of predicted vote fraction for ωk by a ωj voter to the predicted
vote fraction for ωj by an ωk voter. A simple calculation shows that given the specific numerical
assumption we constructed, ω2 will have a higher prediction normalized vote than ω1 when the
true state is ω1.
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