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Abstract

Omitted proofs for results in “A Structural Theorem for Rationalizability in the

Normal Form of Dynamic Games” Chen (2011) are presented.

A Online Appendix

Lemmas 1 and 2 are the counterparts of Lemmas 6 and 7 of WY under RURA. Before we
present their proofs, we provide some sketches for readers who are familiar with WY’s argu-
ments. WY prove their Lemma 7 by induction on k. Their Richness assumption guarantees
that when k£ = 0, i.e., when it is vacuously true that E“' = tf/ for all &' < k, choosing ti
with #; [0°'] = 1 proves the claim. Here when k = 0, we use RURA to set t; to be a finite
type with S° [t;] = {s;}. This is possible because finite types are dense in T (see (Mertens
and Zamir, 1985, Theorem 3.1)) and S;° [-] is a nonempty and upper hemicontinuous corre-

spondence (see Dekel et al. (2006)). In words, WY start the "infection argument" from the
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dominance regions, while we start it from the "types with unique ICR actions" defined by

RURA. The proof of the induction step is similar to WY.

The modification of Lemma 6 is as follows. Let ¢; be a finite type contained in the
model (© x T, k) and s; € S [t;]. Suppose that s; is a best reply to marggys_,m'*% for some
wti%i which is valid for t;. WY make s; a strict best reply ¢; (m) by setting the belief of ¢; (m)
ti»

to be the (1 — wil, l)—mixture between 7% and some belief 7 which assigns probability 1

m
to 0. In our case, since s; is the unique rationalizable action for some type by RURA, s; is
also a strict best reply to some belief 7% whose support contains only uniquely rationalizable

actions which by RURA are also strict best replies to some other beliefs, and so on.

A.1 Proof of Lemma 1

To prove Lemma 1, we need the following lemma which is a straightforward consequence of
RURA.

Lemma 1 Under RURA, for each i and each s; such that s; € S [ti] for some t; € T,
there is some m% € A(© x S_;) such that {s;} = BR; (7w®), and moreover, 1% (s_;) > 0
only if s_; € SX[t_;] for some t_; € T*,.

Proof. Since s; € S [t;] for some t;, by RURA, S [t;] = {s;} for some type ¢;. Hence,

{s:} = BR; (margg, g ') for some valid 7% for ¢;. Let m* =margexs_,7'"* and hence

{si} = BR;(w*). Since 7'#% ({(0,t_;,s_;) : s_; € SX[t_i]}) = 1, 7% (s_;) > 0 only if
s_; € 8%t for somet_; € T*,. A

We now prove Lemma 1.

Lemma 1 Under RURA, for any finite type t; € T and any action s; € S5° [t;], there exists a
sequence of finite models ((© x T™,k™))~_, and a sequence of finite types (t; (m)) ~_, such
that t;(m) € T/" and s; € V"™ [t; (m)] for some profile of correspondences (ij)jeN with
Vim T =S which satisfies the strict best reply property, for all m, and lim, .o t; (m) =
t;.

Proof. Consider any s; € S5°[t;], s; € BR; (marg@Xsijwthsj> for some valid 7' for t;.
Moreover, by Lemma 1, there is some 7% € A (© x S_;) such that {s;} = BR; (7%), and
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moreover, 7% (s_;) > 0 only if s_; € S [t_;] for some t_; € T* ..
We now define (© x 7™, k™) as follows.'
T’]m = {?j (tj, sj,m) : tj c T‘j,Sj c Sjoo [t]]} U

{7;(0,s;) : 0 € ©,5; € S°[t;] for some t; € T} }.

m

K2 (t55m) and H;”j(gysj) are defined respectively by

1 1
m = (= )r%opt — ) glisi o7t .
I{Tj(tjzsjvm) <m @ n_] + 1 m d T_J’m’
m _ s5; -1
/{71'(0783') = 7m-o 77—]‘7

where

T jm ¢+ (0t j,85) = (0,7 (tj,55,m)), V(0,1 5,5 5) st. t ;€T 4,5 ;€ S%[t4],
Ny (0,s5) = (0,75(0,55)),V(0,5s ) st. s ;€ 8%t ;] forsomet ; €T,

For each 7, (t;, s;,m), define the belief
T = (%) 7% oﬁ:;» ot + (1 - %) % o ?:;m oy teA(O x T x S_j) where
v (0,7t s—m)) = (0,7 (t—j, s—5,m)  5-5) 5

§  (0,75(0,5-5) = (0,7 (0,55),55)-

That is, 7; (t;, s;, m) believes that s_; is played at each (6,7 _; (t—;,5_;,m)) and s ; is played
at each (9,?_]~ (9, s j)) Then, by construction,

1 1
margg, g T = (E) T+ (1 — E) margexsfjﬂtj’sf.

Since s; € BR; (marg@XS_jﬁtj’sj>, {s;} = BR; (7%), and - € (0,1], {s;} = BR, (margexs_j%).
Similarly, for each 7; (6, s;) define the belief
T=m%on_jot e A(OXT xS ;).

Then, by construction, margexs_,# = 7%. Hence, {s;} = BR; (marg@X s_ﬁ>- Thus, if we
define

Vit [T (t,s5,m)] = {sj}, V7, (t,55,m),Vj;
Vim [T (0,85)] = {sj}, V75 (0,85), V7,

'If © is an infinite compact metric space and ¢; is in a finite model (0’ x T, k), we replace (O x T™, k™)
in the proof by (6" x T™, k™) where ©” = © U {6 € ©’ : ky, [#] > 0 for some t; € T and j € N} and © is
defined in RURA’ in (Chen, 2011, Section A.1).



then V™[] has the strict best reply property stated in the model (© x T™, £™).

It remains to show that lim,, . 7; (t;, s;, m) = t;. By construction, each probability
distribution is continuous in (¢;,s;,m). Hence, by Lemma 4 of WY, h; (7; (¢;,s;,m)) —
h; (7; (t;,4,0)) (in product topology) as m — oco. The proof that h; (7; (¢;,s;,0)) = h; (t;)
for each t; and j is exactly the same as that in (Weinstein and Yildiz, 2007, Lemma 6).1

A.2 Proof of Lemma 2

Lemma 2 Let (© x T, k) be a finite model. Under RURA, for any type t; € T;, any action
s; € Vi[t:| for some profile of correspondences (V})jeN with V; : T; =2 S; which satisfies
the strict best reply property, and any integer k > 1, there exists a finite type t; such that
¥ =¥ for all K <k and S{° [t;] = {s:}.

Proof. We prove this claim by induction on k. First, suppose that s; € V;[t;] for some
profile of correspondences (Vj)je Ny with V; : T; = S; which satisfies the strict best reply
property. A correspondence which has the strict best reply property clearly has the best
reply property (as defined in Dekel et al. (2007)). Hence, s; € S° [t;]. By RURA, there is a
finite type #; such that S [Z] = {s;}.

Now fix any k£ > 0 and any ¢ € N. Write each t_; as t_; = ([, h), where

t2

—9

= (t

—1

L) and b= (85,15 L)

are the lower- and higher-order beliefs, respectively, Let L = {I|3h: (I,h) € T*;}. The
induction hypothesis is that for each finite t_; = (I, h) and each s_; € V_; [t_;], there exists
finite type t_; [s_] = <l,ﬁ [l s_i]> such that

S [i 5] = {s_i}. (IH)

Take any s; € V; [t;] for some finite type ¢; € T;*. We will construct a finite type t; as in the
lemma. Since (Vj),_, satisfies the strict best reply property, BR; (margg, g m) = {s;} for
some m € A (O x T_; x S_;) such that marge.r= 7 = iy, and 7 (s_; € V_;[t_;]) = 1.

Using the induction hypothesis, define the mapping p :support (marg@X Ix S_ﬁ) —
O x T*,, by

_iy

(0,1, ) — (9,?4 [s_i]),
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where type t_; [s_;] = (l,% L s,i]) is as in (IH). Define t; by

Ky, = (margexLxS,iﬂ-) © :u_l'

As (Weinstein and Yildiz, 2007, pp.395-396), we can verify that

_ 1 1 1
margeyrhy, = TOPIO)gxrxs_, OH ©ODPIOJgyr
.1 1 .1

= marggy k-

Moreover, by (IH), each (6,t_;) on the support of x; which is of the form (9,%:1- [s,i])
and tN,Z- [s_;] has the unique rationalizable action s_;. Thus, there exists a unique 7 which
is valid for ¢;. This belief is 7 = K, © ~~1 where 7 : ((9,251,- [s,i]) — (G,tN,i [s_i, 3,2-). By

construction,

~ .1 | 1
margeyrxs_;T = TOPIO)gxrxs_,OH ©7  OPIO)Jgxrxs_;
_ —1
- WOPTOJ@XLXS,Z-

= marggyrxs_ ;7T

where the second equality follows because projeoxrxs_; © v o i is the identity mapping on
support (marg@X Ix Sﬂw). However, s; is the only best reply to the belief marggs_,7 which
is the same as margegys_,7. Hence, S [t:} = {s;}. Finally, t; is indeed a finite type since

supportrg, is a finite set and consists entirely of finite types.ll

A.3 Proof of Lemma 3

In this proof, we only require that © is a compact metric space equipped with metric d°. Let
Jj € {1,2,...,n} denote a generic player. Recall that the universal type space T} endowed
with the product topology is a compact metrizable space. The compatible metric d; on Tf
used in the proof is the one obtained from the Prohorov distance between beliefs of the same

order.” Specifically, for any t;,t; € T, let d} (¢1,t7') be the Prohorov distance between ¢} and

2Let Y be an arbitrary compact metric space endowed with metric p and the Borel o-algebra. For any

two p, 1’ € A(Y), the Prohorov distance between p and p is defined as

d(p,p')=inf{e > 0: p(E) < u' (E°) +e¢ for all Borel set E C Y}



t! (recall t}, ¢! € A(©)). Recursively, for any integer k > 2, and t;,t; € T;, let d¥ (%, ") be

the Prohorov distance between tk and t’k where t* t'* ¢ A (@ x TF= 1) in which Tk 1is the

ALY
)th—order beliefs of player j’s opponents and © x Tk ! is equipped with the

space of all (k —
metric p*' defined as p">' ((0,%77), (¢,¢%;1)) = max (d°(0,0") , max;.; d5 ' (¢, ;).
Let d; (t], t;) =02 kdk (t;“, t;k) i.e., d; is the product metric which metrizes the product

topology on T7.

Lemma 3 For any type t; € T}, there is a sequence of finite types (t; (m)) ~_, such that
S [ti (m)] = S3° [&;] for all m and limp, .o t; (m) = 1;.

Proof. We divide the proof into three steps.
Step 1. Construct the sequence of finite types.

Since T} is a compact metric space, for each natural number m, T} can be covered by
finitely many open balls with radius 1/2m. Let 7j,, be the finite measurable partition of 77
induced from these open balls and thus for any T € 7;,,, and ¢; and ¢} in T}, d; (t t. ) <1/m.

VRR
Second, let 7} be the finite measurable partition induced by rationalizable sets, i.e., for any
T; € Tho, t, 1) € T; iff S [t ] S5 [ti].* Let Y;m be the join (coarsest common refinement)
of T;p and 7,,,. Let f;,, : T’ ’f}m be the mapping such that f;,, (t;) = ’tv-m iff t; € Z]m

Moreover, for each t] m € ’T .m, select arbitrarily a type ¢, € tj m- It follows that
dj (tjstim) < 1/m,Vt; € L. (1)
Define a sequence of finite models ((@ X Tm,k“m>>ooi by letting ij = ’]Ng-,m, and for each
re 10 m)] = O t)  foym () =T m}] V(0,8 5m) €O X ™. (2)

Note ng denotes both a subset of T and a type in the model (@ X Tm, Em) . We will write
%vj,m € ’i;m for the former and %vjm € T}m for the latter when necessary. Let t; (m) = fin (Zz)

where B = {y € Y :infcpp(y,y’) < €}. It is known that the Prohorov metric metrizes the weak*-topology
on A (Y) (see (Dudley, 2002, 11.3.3. Theorem)).

#Measurability follows from upper hemicontinuity (u.h.c.) of S5° [-]: If A} C A; is 1—minimal in the sense
that there is no type ¢; with S5° [t;] € Af, then wh.c. implies {t;: S7°[t;] = A} = {t; ] C A5}
is open and hence measurable; if A} C Aj is 2—minimal in the sense that St Ag 1ff S;’O [t;] is
I—minimal then {¢; : $5° [t;] = A}} = {t; : ] C AN\ {t;: ;] is 1 — minimal} is measurable, and
so on. Since A; is a ﬁnlte set, every S}-X’ [ j] is k—mlmmal for some k and thus {t;: S5 [t;] = A}} is

measurable,VA’ C A;.



for every m. Step 2 and Step 3 below show that lim,, . ¢; (m) = ; and S |¢ [_» (m)] 2
Se° [#;] for all m. Since S°[-] is upper hemicontinuous and lim,, .o &; (m) = &;, it follows
that S [t; (m)] = S¢° [¢] for sufficiently large m, say m > m. We then define ¢; (m) =

t; (M +m),Ym and (t; (m)) °_, is the desired sequence.

Step 2. For each m and each t; € T}, S5° [fjm (t;)] 2 S5° [t].

First, for each #;,, € ij, we define S Em] = 5% [t;.m]. We show that S, [-] satisfies

J
the best-reply property on the model (© x 7™, %m> (see (Dekel et al., 2007, Definition 1)).

To see this, suppose that s; € S; [t;]. Since S; [t;m] = S [tjm], 85 € S5°[tjm]. Thus,
s; € BR; (marg@XSﬂ_ﬂ> for some ™ € A (@ X T, X S_j) which is valid for ¢;,,.

Define 7 € A (@ X TE’; X S,j> such that
TL(0,tjm,s-3)] =7 ({(0.t=5,5-5) + fojm (t—j) = t_jm }) ¥ (0,8, 5-;) (3)

. . . . =~ _ ~m
Since 7 is valid for ¢ ,,, margexr+ T = ;. Hence, by (2), Marge, jm T = Ry, - Moreover,

tj,
T ({0 jm5-5) 255 €55 [-jm] })
= w{(0,t_j,55) : fojm(t—) = t jmands ;€5 [tN,j,m]}
= 7{(0,t-g,5-5) t fojm (t-5) = t_jm and s_j € S [t_jm]}
= 7 ({(0,1-5,5) s 55 € ST [tl})
=1
where the first equality follows from (3), the second follows because S_; [%: j,m] S [t —jml,

the third follows because every t_; € {_;,,, has the same rationalizable set as t_; and the

last is because 7 is valid for t;,,. Finally, since s; € BR; (marg@X S_jﬂ') and 7™ and T
have the same marginal distribution on © x S_;, it follows that s; € BR; <rnarg@X S_J_%).

Hence, S, [-] satisfies the best-reply property on (@ x Tm Nm) Thus, by (Dekel et al., 2007,

Proposition 4), S [ij - S [ ]m} and moreover, since S [ij = S}’O [tjm], we obtain

S [tjm] C S5 Dm] and because every t; € t;,, has the same rationalizable set as t;,,, we
get S [t;] € S5° [fjm (t5)]-
Step 3. lim,, oo SUPy e dj (fim (t5) ,t;) = 0.

For each t; € T, let tim = fim (t;). We show that the k*'-order belief of ¢, (viewed as

a type in the model <@ X fm, Em>) converges to t;‘? and the convergence is uniform in ¢;. We
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prove this by induction on k. For k = 1, observe that by (2 )~1- =t} .- By (1), d; (t;, t; m) =
dj (tj,tjm) < 1/m, and since d1 ( o J) < d; (Jm, ) lim,, .00 SUP;, et d1 ( s ]) = 0.

Now consider £k > 1. Let ¢ € (0,1) and we show that for sufficiently large m,

dk (t ( both) < eforallt; € Tr. By the induction hypothesis, there is some 7 (¢) such
— k—1 — *

that for any m > m (¢), max;r; d j (f] m (tjr) ,tf, 1) <e/2forallt_j=(ty), ; €17,

Consider m > {2/e, 7 (¢)}. Recall that d¥ is the Prohorov metric on the space of all k'

order beliefs. Since t]m is a finite type, it suffices to verify that for each (9 t* ﬁn) in the

support of %Vj,m, we have

B 10.750)] = ({00 fan )T =501
< i (075007

< t((0,755)7) +=

where the first equality follows from (2); the first inequality follows because f_; ., (

k—1
i)

?ﬁ;lm implies max;; dk 1(75]‘7 l,’tf ) < €/2 (since m > T (e)); the second follows be-
cause by (1), db (tfm,t;“) < 1/m < ¢/2 (since m > 2/e). Thus, for m > {2/e,m(¢)},

d"; < fim ( j) ,tf) <e¢forall t; € T}. Since € > 0 is arbitrary, the induction step follows.l
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