
Online Appendix to "A Structural Theorem for

Rationalizability in the Normal Form of Dynamic

Games"

Yi-Chun Chen�

March 3, 2012

Abstract

Omitted proofs for results in �A Structural Theorem for Rationalizability in the

Normal Form of Dynamic Games�Chen (2011) are presented.

A Online Appendix

Lemmas 1 and 2 are the counterparts of Lemmas 6 and 7 of WY under RURA. Before we

present their proofs, we provide some sketches for readers who are familiar with WY�s argu-

ments. WY prove their Lemma 7 by induction on k. Their Richness assumption guarantees

that when k = 0, i.e., when it is vacuously true that etk0i = tk
0
i for all k

0 � k, choosing eti
with eti [�si ] = 1 proves the claim. Here when k = 0, we use RURA to set eti to be a �nite
type with S1i [ti] = fsig. This is possible because �nite types are dense in T �i (see (Mertens
and Zamir, 1985, Theorem 3.1)) and S1i [�] is a nonempty and upper hemicontinuous corre-
spondence (see Dekel et al. (2006)). In words, WY start the "infection argument" from the
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dominance regions, while we start it from the "types with unique ICR actions" de�ned by

RURA. The proof of the induction step is similar to WY.

The modi�cation of Lemma 6 is as follows. Let ti be a �nite type contained in the

model (�� T; �) and si 2 S1i [ti]. Suppose that si is a best reply to marg��S�i�ti;si for some
�ti;si which is valid for ti. WY make si a strict best reply ti (m) by setting the belief of ti (m)

to be the
�
1� 1

m
; 1
m

�
-mixture between �ti;si and some belief � which assigns probability 1

to �si. In our case, since si is the unique rationalizable action for some type by RURA, si is

also a strict best reply to some belief �si whose support contains only uniquely rationalizable

actions which by RURA are also strict best replies to some other beliefs, and so on.

A.1 Proof of Lemma 1

To prove Lemma 1, we need the following lemma which is a straightforward consequence of

RURA.

Lemma 1 Under RURA, for each i and each si such that si 2 S1i [t0i] for some t0i 2 T �i ,
there is some �si 2 �(�� S�i) such that fsig = BRi (�

si), and moreover, �si (s�i) > 0

only if s�i 2 S1�i [t�i] for some t�i 2 T ��i.

Proof. Since si 2 S1i [t0i] for some t0i, by RURA, S1i [ti] = fsig for some type ti. Hence,
fsig = BRi

�
marg��S�i�

ti;si
�
for some valid �ti;si for ti. Let �si =marg��S�i�

ti;si and hence

fsig = BRi (�
si). Since �ti;si

��
(�; t�i; s�i) : s�i 2 S1�i [t�i]

	�
= 1, �si (s�i) > 0 only if

s�i 2 S1�i [t�i] for some t�i 2 T ��i.�

We now prove Lemma 1.

Lemma 1Under RURA, for any �nite type ti 2 T �i and any action si 2 S1i [ti], there exists a
sequence of �nite models ((�� Tm; �m))1m=1 and a sequence of �nite types (ti (m))

1
m=1 such

that ti (m) 2 Tmi and si 2 V mi [ti (m)] for some pro�le of correspondences
�
V mj
�
j2N with

V mj : Tmj � Sj which satis�es the strict best reply property, for all m, and limm!1 ti (m) =

ti.

Proof. Consider any sj 2 S1j [tj], sj 2 BRj
�
marg��S�j�

tj ;sj

�
for some valid �tj ;sj for tj.

Moreover, by Lemma 1, there is some �sj 2 �(�� S�j) such that fsjg = BRj (�sj), and
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moreover, �sj (s�j) > 0 only if s�j 2 S1�j [t�j] for some t�j 2 T ��j.

We now de�ne (�� Tm; �m) as follows.1

Tmj =
�
� j (tj; sj;m) : tj 2 Tj; sj 2 S1j [tj]

	[�
� j (�; sj) : � 2 �; sj 2 S1j [tj] for some tj 2 T �j

	
.

�m�j(tj ;sj ;m) and �
m
�j(�;sj)

are de�ned respectively by

�m�j(tj ;sj ;m) =

�
1

m

�
�sj � b��1�j + �1� 1

m

�
�tj ;sj � b��1�j;m;

�m�j(�;sj) = �sj � b��1�j ,
where

b��j;m : (�; t�j; s�j) 7! (�; ��j (t�j; s�j;m)) , 8 (�; t�j; s�j) s.t. t�j 2 T�j; s�j 2 S1�j [t�j] ,b��j : (�; s�j) 7! (�; ��j (�; s�j)) , 8 (�; s�j) s.t. s�j 2 S1�j [t�j] for some t�j 2 T ��j.

For each � j (tj; sj;m), de�ne the belief

b� =

�
1

m

�
�sj � b��1�j � ��1 + �1� 1

m

�
�tj ;sj � b��1�j;m � �1 2 � ��� Tm�j � S�j� where

 : (�; ��j (t�j; s�j;m)) 7! (�; ��j (t�j; s�j;m) ; s�j) ;

� : (�; ��j (�; s�j)) 7! (�; ��j (�; s�j) ; s�j) .

That is, � j (tj; sj;m) believes that s�j is played at each (�; ��j (t�j; s�j;m)) and s0�j is played

at each
�
�; ��j

�
�; s0�j

��
. Then, by construction,

marg��S�jb� = � 1m
�
�sj +

�
1� 1

m

�
marg��S�j�

tj ;sj .

Since sj 2 BRj
�
marg��S�j�

tj ;sj

�
, fsjg = BRj (�sj), and 1

m
2 (0; 1], fsjg = BRj

�
marg��S�jb��.

Similarly, for each � j (�; sj) de�ne the belief

e� = �sj � b��1�j � ��1 2 � ��� Tm�j � S�j� .
Then, by construction, marg��S�je� = �sj . Hence, fsjg = BRj �marg��S�je��. Thus, if we
de�ne

V mj [� j (tj; sj;m)] = fsjg , 8� j (tj; sj;m) ;8j;

V mj [� j (�; sj)] = fsjg , 8� j (�; sj) ;8j,
1If � is an in�nite compact metric space and ti is in a �nite model (�0 � T; �), we replace (�� Tm; �m)

in the proof by (�00 � Tm; �m) where �00 = � [
�
� 2 �0 : �tj [�] > 0 for some tj 2 Tj and j 2 N

	
and � is

de�ned in RURA0 in (Chen, 2011, Section A.1).
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then V mj [�] has the strict best reply property stated in the model (�� Tm; �m).

It remains to show that limm!1 � j (tj; sj;m) = tj. By construction, each probability

distribution is continuous in (tj; sj;m). Hence, by Lemma 4 of WY, hj (� j (tj; sj;m)) !
hj (� j (tj; sj; 0)) (in product topology) as m!1. The proof that hj (� j (tj; sj; 0)) = hj (tj)
for each tj and j is exactly the same as that in (Weinstein and Yildiz, 2007, Lemma 6).�

A.2 Proof of Lemma 2

Lemma 2 Let (�� T; �) be a �nite model. Under RURA, for any type ti 2 Ti, any action
si 2 Vi [ti] for some pro�le of correspondences (Vj)j2N with Vj : Tj � Sj which satis�es

the strict best reply property, and any integer k � 1, there exists a �nite type eti such thatetk0i = tk0i for all k0 � k and S1i �eti� = fsig.
Proof. We prove this claim by induction on k. First, suppose that si 2 Vi [ti] for some
pro�le of correspondences (Vj)j2N with Vj : Tj � Sj which satis�es the strict best reply

property. A correspondence which has the strict best reply property clearly has the best

reply property (as de�ned in Dekel et al. (2007)). Hence, si 2 S1i [ti]. By RURA, there is a
�nite type eti such that S1i �eti� = fsig.

Now �x any k > 0 and any i 2 N . Write each t�i as t�i = (l; h), where

l =
�
t1�i; t

2
�i; :::; t

k�1
�i
�
and h =

�
tk�i; t

k+1
�i ; :::

�
are the lower- and higher-order beliefs, respectively, Let L =

�
lj9h : (l; h) 2 T ��i

	
. The

induction hypothesis is that for each �nite t�i = (l; h) and each s�i 2 V�i [t�i], there exists
�nite type et�i [s�i] = �l;eh [l; s�i]� such that

S1�i
�et�i [s�i]� = fs�ig . (IH)

Take any si 2 Vi [ti] for some �nite type ti 2 T �i . We will construct a �nite type eti as in the
lemma. Since (Vj)j2N satis�es the strict best reply property, BRi

�
marg��S�i�

�
= fsig for

some � 2 �(�� T�i � S�i) such that marg��T ��i� = �ti and � (s�i 2 V�i [t�i]) = 1.

Using the induction hypothesis, de�ne the mapping � :support
�
marg��L�S�i�

�
!

�� T ��i, by
� : (�; l; s�i)!

�
�;et�i [s�i]� ,
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where type et�i [s�i] = �l;eh [l; s�i]� is as in (IH). De�ne eti by
�eti � �marg��L�S�i�� � ��1.

As (Weinstein and Yildiz, 2007, pp.395-396), we can verify that

marg��L�eti = � � proj�1��L�S�i � �
�1 � proj�1��L

= � � proj�1��L = � � proj�1��T ��i � proj
�1
��L

= marg��L�ti.

Moreover, by (IH), each (�; t�i) on the support of �eti which is of the form �
�;et�i [s�i]�

and et�i [s�i] has the unique rationalizable action s�i. Thus, there exists a unique e� which
is valid for eti. This belief is e� = �eti � �1 where  : ��;et�i [s�i]� 7! �

�;et�i [s�i] ; s�i�. By
construction,

marg��L�S�ie� = � � proj�1��L�S�i � �
�1 � �1 � proj�1��L�S�i

= � � proj�1��L�S�i
= marg��L�S�i�

where the second equality follows because proj��L�S�i �  � � is the identity mapping on
support

�
marg��L�S�i�

�
. However, si is the only best reply to the belief marg��S�i� which

is the same as marg��S�ie�. Hence, S1i �eti� = fsig. Finally, eti is indeed a �nite type since
support�eti is a �nite set and consists entirely of �nite types.�

A.3 Proof of Lemma 3

In this proof, we only require that � is a compact metric space equipped with metric d0. Let

j 2 f1; 2; :::; ng denote a generic player. Recall that the universal type space T �j endowed
with the product topology is a compact metrizable space. The compatible metric dj on T �j
used in the proof is the one obtained from the Prohorov distance between beliefs of the same

order.2 Speci�cally, for any tj; t0j 2 T �j , let d1j
�
t1j ; t

01
j

�
be the Prohorov distance between t1j and

2Let Y be an arbitrary compact metric space endowed with metric � and the Borel �-algebra. For any

two �; �0 2 �(Y ), the Prohorov distance between � and �0 is de�ned as

d (�; �0) = inf f" > 0 : � (E) � �0 (E") + " for all Borel set E � Y g
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t01j (recall t
1
j ; t

01
j 2 �(�)). Recursively, for any integer k � 2, and tj; t0j 2 T �j , let dkj

�
tkj ; t

0k
j

�
be

the Prohorov distance between tkj and t
0k
j where t

k
j ; t

0k
j 2 �

�
�� T k�1�j

�
in which T k�1�j is the

space of all (k � 1)th-order beliefs of player j�s opponents and ��T k�1�j is equipped with the

metric �k�1�j de�ned as �k�1�j
��
�; tk�1�j

�
;
�
�0; t0k�1�j

��
� max

�
d0 (�; �0) ;maxj0 6=j d

k�1
j0

�
t0j0 ; tj0

��
.

Let dj
�
tj; t

0
j

�
�
P1

k=1 2
�kdkj

�
tkj ; t

0k
j

�
, i.e., dj is the product metric which metrizes the product

topology on T �j .

Lemma 3 For any type ti 2 T �i , there is a sequence of �nite types (ti (m))
1
m=1 such that

S1i [ti (m)] = S
1
i

�
ti
�
for all m and limm!1 ti (m) = ti.

Proof. We divide the proof into three steps.

Step 1. Construct the sequence of �nite types.

Since T �j is a compact metric space, for each natural number m, T
�
j can be covered by

�nitely many open balls with radius 1=2m. Let Tj;m be the �nite measurable partition of T �j
induced from these open balls and thus for any Tj 2 Tj;m, and tj and t0j in Tj, dj

�
tj; t

0
j

�
< 1=m.

Second, let Tj;0 be the �nite measurable partition induced by rationalizable sets, i.e., for any
Tj 2 Tj;0, tj; t0j 2 Tj i¤S1j [tj] = S1j

�
t0j
�
.3 Let eTj;m be the join (coarsest common re�nement)

of Tj;0 and Tj;m. Let fj;m : T �j ! eTj;m be the mapping such that fj;m (tj) = etj;m i¤ tj 2 etj;m.
Moreover, for each etj;m 2 eTj;m, select arbitrarily a type tj;m 2 etj;m. It follows that

dj (tj; tj;m) < 1=m;8tj 2 etj;m. (1)

De�ne a sequence of �nite models
��
�� eTm; e�m��1

m=1
by letting eTmj � eTj;m, and for eachetj;m 2 eTmj ;

e�metj;m ���;et�j;m�� � ��tj;m ��(�; t�j) : f�j;m (t�j) = et�j;m	� , 8 ��;et�j;m� 2 �� eTm�j. (2)

Note etj;m denotes both a subset of T �j and a type in the model ��� eTm; e�m�. We will writeetj;m 2 eTj;m for the former and etj;m 2 eTmj for the latter when necessary. Let ti (m) � fi;m
�
ti
�

where E" � fy 2 Y : infy02E � (y; y0) < "g. It is known that the Prohorov metric metrizes the weak�-topology
on �(Y ) (see (Dudley, 2002, 11.3.3. Theorem)).

3Measurability follows from upper hemicontinuity (u.h.c.) of S1j [�]: If A0j � Aj is 1�minimal in the sense
that there is no type tj with S1j [tj ] ( A0j , then u.h.c. implies

�
tj : S

1
j [tj ] = A

0
j

	
=
�
tj : S

1
j [tj ] � A0j

	
is open and hence measurable; if A0j � Aj is 2�minimal in the sense that S1j [tj ] ( A0i i¤ S

1
j [tj ] is

1�minimal then
�
tj : S

1
j [tj ] = A

0
j

	
=
�
tj : S

1
j [tj ] � A0j

	
n
�
tj : S

1
j [tj ] is 1�minimal

	
is measurable, and

so on. Since Aj is a �nite set, every S1j [tj ] is k�minimal for some k and thus
�
tj : S

1
j [tj ] = A

0
j

	
is

measurable,8A0j � Aj .
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for every m. Step 2 and Step 3 below show that limm!1 ti (m) = ti and S1i
�
ti (m)

�
�

S1i
�
ti
�
for all m. Since S1i [�] is upper hemicontinuous and limm!1 ti (m) = ti, it follows

that S1i
�
ti (m)

�
= S1i

�
ti
�
for su¢ ciently large m, say m � m. We then de�ne ti (m) =

ti (m+m),8m and (ti (m))
1
m=1 is the desired sequence.

Step 2. For each m and each tj 2 T �j , S1j [fj;m (tj)] � S1j [tj].

First, for each etj;m 2 eTmj , we de�ne Sj �etj;m� = S1j [tj;m]. We show that Sj [�] satis�es
the best-reply property on the model

�
�� eTm; e�m� (see (Dekel et al., 2007, De�nition 1)).

To see this, suppose that sj 2 Sj
�etj;m�. Since Sj �etj;m� = S1j [tj;m], sj 2 S1j [tj;m]. Thus,

sj 2 BRj
�
marg��S�j�

�
for some � 2 �

�
�� T ��j � S�j

�
which is valid for tj;m.

De�ne e� 2 ���� eTm�j � S�j� such thate� ���;et�j;m; s�j�� � � ��(�; t�j; s�j) : f�j;m (t�j) = et�j;m	� ;8 ��;et�j;m; s�j� (3)

Since � is valid for tj;m, marg��T ��j� = �
�
tj;m
. Hence, by (2), marg��eTm�je� = e�metj;m. Moreover,e� ����;et�j;m; s�j� : s�j 2 S�j �et�j;m�	�

= �
�
(�; t�j;; s�j) : f�j;m (t�j) = et�j;m and s�j 2 S�j �et�j;m�	

= �
�
(�; t�j;; s�j) : f�j;m (t�j) = et�j;m and s�j 2 S1�j [t�j;m]	

= �
��
(�; t�j; s�j) : s�j 2 S1�j [t�j]

	�
= 1

where the �rst equality follows from (3), the second follows because S�j
�et�j;m� = S1�j [t�j;m],

the third follows because every t�j 2 et�j;m has the same rationalizable set as t�j;m, and the
last is because � is valid for tj;m. Finally, since sj 2 BRj

�
marg��S�j�

�
and e� and �

have the same marginal distribution on � � S�j, it follows that sj 2 BRj
�
marg��S�je��.

Hence, Sj [�] satis�es the best-reply property on
�
�� eTm; e�m�. Thus, by (Dekel et al., 2007,

Proposition 4), Sj
�etj;m� � S1j

�etj;m�, and moreover, since Sj �etj;m� = S1j [tj;m], we obtain

S1j [tj;m] � S1j
�etj;m� and because every tj 2 etj;m has the same rationalizable set as tj;m, we

get S1j [tj] � S1j [fj;m (tj)].

Step 3. limm!1 suptj2T �j dj (fj;m (tj) ; tj) = 0.

For each tj 2 T �j , let etj;m = fj;m (tj). We show that the kth-order belief of etj;m (viewed as
a type in the model

�
�� eTm; e�m�) converges to tkj and the convergence is uniform in tj. We
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prove this by induction on k. For k = 1, observe that by (2) et1j;m = t1j;m. By (1), dj �tj;etj;m� =
dj (tj; tj;m) < 1=m, and since d1j

�et1j;m; t1j� � dj �etj;m; tj�, limm!1 suptj2T �j d
1
j

�et1j;m; t1j� = 0.
Now consider k > 1. Let " 2 (0; 1) and we show that for su¢ ciently large m,

dkj
�etkj;m; tkj � < " for all tj 2 T �j . By the induction hypothesis, there is some m (") such

that for any m > m ("), maxj0 6=j dk�1j0

�
fj0;m (tj0)

k�1 ; tk�1j0

�
< "=2 for all t�j = (tj0)j0 6=j 2 T ��j.

Consider m > f2=";m (")g. Recall that dkj is the Prohorov metric on the space of all kth-
order beliefs. Since etj;m is a �nite type, it su¢ ces to verify that for each ��;etk�1�j;m

�
in the

support of etj;m, we have
etkj;m ���;etk�1�j;m

��
= ��tj;m

�n
(�; t�j) : f�j;m (t�j)

k�1 = etk�1�j;m

o�
� ��tj;m

��
�;etk�1�j;m

�"=2�
< tkj

��
�;etk�1�j;m

�"�
+ "

where the �rst equality follows from (2); the �rst inequality follows because f�j;m (t�j)
k�1 =etk�1�j;m implies maxj0 6=j dk�1j0

�
tk�1j0 ;etk�1j0;m

�
< "=2 (since m > m (")); the second follows be-

cause by (1), dkj
�
tkj;m; t

k
j

�
< 1=m < "=2 (since m > 2=") . Thus, for m > f2=";m (")g,

dkj

�
fj;m (tj)

k ; tkj

�
< " for all tj 2 T �j . Since " > 0 is arbitrary, the induction step follows.�
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