Online Appendix to "A Structural Theorem for Rationalizability in the Normal Form of Dynamic Games"

Yi-Chun Chen*

March 3, 2012

Abstract

Omitted proofs for results in "A Structural Theorem for Rationalizability in the Normal Form of Dynamic Games" Chen (2011) are presented.

A Online Appendix

Lemmas 1 and 2 are the counterparts of Lemmas 6 and 7 of WY under RURA. Before we present their proofs, we provide some sketches for readers who are familiar with WY's arguments. WY prove their Lemma 7 by induction on k. Their Richness assumption guarantees that when k = 0, i.e., when it is vacuously true that $\tilde{t}_i^{k'} = t_i^{k'}$ for all $k' \leq k$, choosing \tilde{t}_i with $\tilde{t}_i [\theta^{s_i}] = 1$ proves the claim. Here when k = 0, we use RURA to set \tilde{t}_i to be a finite type with $S_i^{\infty} [t_i] = \{s_i\}$. This is possible because finite types are dense in T_i^* (see (Mertens and Zamir, 1985, Theorem 3.1)) and $S_i^{\infty} [\cdot]$ is a nonempty and upper hemicontinuous correspondence (see Dekel et al. (2006)). In words, WY start the "infection argument" from the

^{*}Department of Economics, National University of Singapore, Singapore 117570, ecsycc@nus.edu.sg

dominance regions, while we start it from the "types with unique ICR actions" defined by RURA. The proof of the induction step is similar to WY.

The modification of Lemma 6 is as follows. Let t_i be a finite type contained in the model $(\Theta \times T, \kappa)$ and $s_i \in S_i^{\infty}[t_i]$. Suppose that s_i is a best reply to $\operatorname{marg}_{\Theta \times S_{-i}} \pi^{t_i, s_i}$ for some π^{t_i, s_i} which is valid for t_i . WY make s_i a strict best reply $t_i(m)$ by setting the belief of $t_i(m)$ to be the $(1 - \frac{1}{m}, \frac{1}{m})$ -mixture between π^{t_i, s_i} and some belief π which assigns probability 1 to θ^{s_i} . In our case, since s_i is the unique rationalizable action for some type by RURA, s_i is also a strict best reply to some belief π^{s_i} whose support contains only uniquely rationalizable actions which by RURA are also strict best replies to some other beliefs, and so on.

A.1 Proof of Lemma 1

To prove Lemma 1, we need the following lemma which is a straightforward consequence of RURA.

Lemma 1 Under RURA, for each *i* and each s_i such that $s_i \in S_i^{\infty}[t'_i]$ for some $t'_i \in T_i^*$, there is some $\pi^{s_i} \in \Delta(\Theta \times S_{-i})$ such that $\{s_i\} = BR_i(\pi^{s_i})$, and moreover, $\pi^{s_i}(s_{-i}) > 0$ only if $s_{-i} \in S_{-i}^{\infty}[t_{-i}]$ for some $t_{-i} \in T_{-i}^*$.

Proof. Since $s_i \in S_i^{\infty}[t'_i]$ for some t'_i , by RURA, $S_i^{\infty}[t_i] = \{s_i\}$ for some type t_i . Hence, $\{s_i\} = BR_i \left(\max_{\Theta \times S_{-i}} \pi^{t_i, s_i} \right)$ for some valid π^{t_i, s_i} for t_i . Let $\pi^{s_i} = \max_{\Theta \times S_{-i}} \pi^{t_i, s_i}$ and hence $\{s_i\} = BR_i (\pi^{s_i})$. Since $\pi^{t_i, s_i} \left(\left\{ (\theta, t_{-i}, s_{-i}) : s_{-i} \in S_{-i}^{\infty}[t_{-i}] \right\} \right) = 1, \ \pi^{s_i} (s_{-i}) > 0$ only if $s_{-i} \in S_{-i}^{\infty}[t_{-i}]$ for some $t_{-i} \in T_{-i}^*$.

We now prove Lemma 1.

Lemma 1 Under RURA, for any finite type $t_i \in T_i^*$ and any action $s_i \in S_i^{\infty}[t_i]$, there exists a sequence of finite models $((\Theta \times T^m, \kappa^m))_{m=1}^{\infty}$ and a sequence of finite types $(t_i(m))_{m=1}^{\infty}$ such that $t_i(m) \in T_i^m$ and $s_i \in V_i^m[t_i(m)]$ for some profile of correspondences $(V_j^m)_{j\in N}$ with $V_j^m: T_j^m \Rightarrow S_j$ which satisfies the strict best reply property, for all m, and $\lim_{m\to\infty} t_i(m) = t_i$.

Proof. Consider any $s_j \in S_j^{\infty}[t_j]$, $s_j \in BR_j \left(\max_{\Theta \times S_{-j}} \pi^{t_j, s_j} \right)$ for some valid π^{t_j, s_j} for t_j . Moreover, by Lemma 1, there is some $\pi^{s_j} \in \Delta(\Theta \times S_{-j})$ such that $\{s_j\} = BR_j(\pi^{s_j})$, and moreover, $\pi^{s_j}(s_{-j}) > 0$ only if $s_{-j} \in S^{\infty}_{-j}[t_{-j}]$ for some $t_{-j} \in T^*_{-j}$.

We now define $(\Theta \times T^m, \kappa^m)$ as follows.¹

$$T_{j}^{m} = \left\{ \overline{\tau}_{j} \left(t_{j}, s_{j}, m \right) : t_{j} \in T_{j}, s_{j} \in S_{j}^{\infty} \left[t_{j} \right] \right\} \bigcup \left\{ \overline{\tau}_{j} \left(\theta, s_{j} \right) : \theta \in \Theta, s_{j} \in S_{j}^{\infty} \left[t_{j} \right] \text{ for some } t_{j} \in T_{j}^{*} \right\}.$$

 $\kappa^m_{\overline{\tau}_j(t_j,s_j,m)}$ and $\kappa^m_{\overline{\tau}_j(\theta,s_j)}$ are defined respectively by

$$\begin{aligned} \kappa^m_{\overline{\tau}_j(t_j,s_j,m)} &= \left(\frac{1}{m}\right) \pi^{s_j} \circ \widehat{\eta}_{-j}^{-1} + \left(1 - \frac{1}{m}\right) \pi^{t_j,s_j} \circ \widehat{\tau}_{-j,m}^{-1}; \\ \kappa^m_{\overline{\tau}_j(\theta,s_j)} &= \pi^{s_j} \circ \widehat{\eta}_{-j}^{-1}; \end{aligned}$$

where

$$\widehat{\tau}_{-j,m} : (\theta, t_{-j}, s_{-j}) \mapsto (\theta, \overline{\tau}_{-j} (t_{-j}, s_{-j}, m)), \forall (\theta, t_{-j}, s_{-j}) \text{ s.t. } t_{-j} \in T_{-j}, s_{-j} \in S_{-j}^{\infty} [t_{-j}],$$
$$\widehat{\eta}_{-j} : (\theta, s_{-j}) \mapsto (\theta, \overline{\tau}_{-j} (\theta, s_{-j})), \forall (\theta, s_{-j}) \text{ s.t. } s_{-j} \in S_{-j}^{\infty} [t_{-j}] \text{ for some } t_{-j} \in T_{-j}^*.$$

For each $\overline{\tau}_j(t_j, s_j, m)$, define the belief

$$\begin{aligned} \widehat{\pi} &= \left(\frac{1}{m}\right) \pi^{s_j} \circ \widehat{\eta}_{-j}^{-1} \circ \xi^{-1} + \left(1 - \frac{1}{m}\right) \pi^{t_j, s_j} \circ \widehat{\tau}_{-j, m}^{-1} \circ \gamma^{-1} \in \Delta \left(\Theta \times T_{-j}^m \times S_{-j}\right) \text{ where} \\ \gamma &: \left(\theta, \overline{\tau}_{-j} \left(t_{-j}, s_{-j}, m\right)\right) \mapsto \left(\theta, \overline{\tau}_{-j} \left(t_{-j}, s_{-j}, m\right), s_{-j}\right); \\ \xi &: \left(\theta, \overline{\tau}_{-j} \left(\theta, s_{-j}\right)\right) \mapsto \left(\theta, \overline{\tau}_{-j} \left(\theta, s_{-j}\right), s_{-j}\right). \end{aligned}$$

That is, $\overline{\tau}_{j}(t_{j}, s_{j}, m)$ believes that s_{-j} is played at each $(\theta, \overline{\tau}_{-j}(t_{-j}, s_{-j}, m))$ and s'_{-j} is played at each $(\theta, \overline{\tau}_{-j}(\theta, s'_{-j}))$. Then, by construction,

$$\operatorname{marg}_{\Theta \times S_{-j}} \widehat{\pi} = \left(\frac{1}{m}\right) \pi^{s_j} + \left(1 - \frac{1}{m}\right) \operatorname{marg}_{\Theta \times S_{-j}} \pi^{t_j, s_j}$$

Since $s_j \in BR_j \left(\max_{\Theta \times S_{-j}} \pi^{t_j, s_j} \right), \{s_j\} = BR_j \left(\pi^{s_j} \right), \text{ and } \frac{1}{m} \in (0, 1], \{s_j\} = BR_j \left(\max_{\Theta \times S_{-j}} \widehat{\pi} \right).$ Similarly, for each $\overline{\tau}_j \left(\theta, s_j \right)$ define the belief

$$\widetilde{\pi} = \pi^{s_j} \circ \widehat{\eta}_{-j}^{-1} \circ \xi^{-1} \in \Delta \left(\Theta \times T^m_{-j} \times S_{-j} \right).$$

Then, by construction, $\operatorname{marg}_{\Theta \times S_{-j}} \widetilde{\pi} = \pi^{s_j}$. Hence, $\{s_j\} = BR_j \left(\operatorname{marg}_{\Theta \times S_{-j}} \widetilde{\pi}\right)$. Thus, if we define

$$V_{j}^{m} \left[\overline{\tau}_{j} \left(t_{j}, s_{j}, m \right) \right] = \{ s_{j} \}, \forall \overline{\tau}_{j} \left(t_{j}, s_{j}, m \right), \forall j;$$
$$V_{j}^{m} \left[\overline{\tau}_{j} \left(\theta, s_{j} \right) \right] = \{ s_{j} \}, \forall \overline{\tau}_{j} \left(\theta, s_{j} \right), \forall j,$$

¹If Θ is an infinite compact metric space and t_i is in a finite model $(\Theta' \times T, \kappa)$, we replace $(\Theta \times T^m, \kappa^m)$ in the proof by $(\Theta'' \times T^m, \kappa^m)$ where $\Theta'' = \overline{\Theta} \cup \{\theta \in \Theta' : \kappa_{t_j} [\theta] > 0$ for some $t_j \in T_j$ and $j \in N\}$ and $\overline{\Theta}$ is defined in RURA' in (Chen, 2011, Section A.1).

then $V_j^m\left[\cdot\right]$ has the strict best reply property stated in the model $(\Theta \times T^m, \kappa^m)$.

It remains to show that $\lim_{m\to\infty} \overline{\tau}_j(t_j, s_j, m) = t_j$. By construction, each probability distribution is continuous in (t_j, s_j, m) . Hence, by Lemma 4 of WY, $h_j(\overline{\tau}_j(t_j, s_j, m)) \rightarrow h_j(\overline{\tau}_j(t_j, s_j, 0))$ (in product topology) as $m \to \infty$. The proof that $h_j(\overline{\tau}_j(t_j, s_j, 0)) = h_j(t_j)$ for each t_j and j is exactly the same as that in (Weinstein and Yildiz, 2007, Lemma 6).

A.2 Proof of Lemma 2

Lemma 2 Let $(\Theta \times T, \kappa)$ be a finite model. Under RURA, for any type $t_i \in T_i$, any action $s_i \in V_i[t_i]$ for some profile of correspondences $(V_j)_{j \in N}$ with $V_j : T_j \Rightarrow S_j$ which satisfies the strict best reply property, and any integer $k \ge 1$, there exists a finite type \tilde{t}_i such that $\tilde{t}_i^{k'} = t_i^{k'}$ for all $k' \le k$ and $S_i^{\infty}[\tilde{t}_i] = \{s_i\}$.

Proof. We prove this claim by induction on k. First, suppose that $s_i \in V_i[t_i]$ for some profile of correspondences $(V_j)_{j\in N}$ with $V_j : T_j \Rightarrow S_j$ which satisfies the strict best reply property. A correspondence which has the strict best reply property clearly has the best reply property (as defined in Dekel et al. (2007)). Hence, $s_i \in S_i^{\infty}[t_i]$. By RURA, there is a finite type \tilde{t}_i such that $S_i^{\infty}[\tilde{t}_i] = \{s_i\}$.

Now fix any k > 0 and any $i \in N$. Write each t_{-i} as $t_{-i} = (l, h)$, where

$$l = \left(t_{-i}^1, t_{-i}^2, ..., t_{-i}^{k-1}\right) \text{ and } h = \left(t_{-i}^k, t_{-i}^{k+1}, ...\right)$$

are the lower- and higher-order beliefs, respectively, Let $L = \{l | \exists h : (l,h) \in T_{-i}^*\}$. The induction hypothesis is that for each finite $t_{-i} = (l,h)$ and each $s_{-i} \in V_{-i}[t_{-i}]$, there exists finite type $\tilde{t}_{-i}[s_{-i}] = (l, \tilde{h}[l, s_{-i}])$ such that

$$S_{-i}^{\infty}\left[\tilde{t}_{-i}\left[s_{-i}\right]\right] = \left\{s_{-i}\right\}.$$
 (IH)

Take any $s_i \in V_i[t_i]$ for some finite type $t_i \in T_i^*$. We will construct a finite type \tilde{t}_i as in the lemma. Since $(V_j)_{j\in N}$ satisfies the strict best reply property, $BR_i(\operatorname{marg}_{\Theta \times S_{-i}}\pi) = \{s_i\}$ for some $\pi \in \Delta(\Theta \times T_{-i} \times S_{-i})$ such that $\operatorname{marg}_{\Theta \times T_{-i}^*}\pi = \kappa_{t_i}$ and $\pi(s_{-i} \in V_{-i}[t_{-i}]) = 1$.

Using the induction hypothesis, define the mapping μ :support $(\max_{\Theta \times L \times S_{-i}} \pi) \to \Theta \times T^*_{-i}$, by

$$\mu: (\theta, l, s_{-i}) \to \left(\theta, \widetilde{t}_{-i} \left[s_{-i}\right]\right),$$

where type $\tilde{t}_{-i}[s_{-i}] = \left(l, \tilde{h}[l, s_{-i}]\right)$ is as in (IH). Define \tilde{t}_i by

$$\kappa_{\tilde{t}_i} \equiv \left(\operatorname{marg}_{\Theta \times L \times S_{-i}} \pi \right) \circ \mu^{-1}$$

As (Weinstein and Yildiz, 2007, pp.395-396), we can verify that

$$\operatorname{marg}_{\Theta \times L} \kappa_{\tilde{t}_{i}} = \pi \circ \operatorname{proj}_{\Theta \times L \times S_{-i}}^{-1} \circ \mu^{-1} \circ \operatorname{proj}_{\Theta \times L}^{-1}$$
$$= \pi \circ \operatorname{proj}_{\Theta \times L}^{-1} = \pi \circ \operatorname{proj}_{\Theta \times T_{-i}^{*}}^{-1} \circ \operatorname{proj}_{\Theta \times L}^{-1}$$
$$= \operatorname{marg}_{\Theta \times L} \kappa_{t_{i}}.$$

Moreover, by (III), each (θ, t_{-i}) on the support of $\kappa_{\tilde{t}_i}$ which is of the form $(\theta, \tilde{t}_{-i}[s_{-i}])$ and $\tilde{t}_{-i}[s_{-i}]$ has the unique rationalizable action s_{-i} . Thus, there exists a unique $\tilde{\pi}$ which is valid for \tilde{t}_i . This belief is $\tilde{\pi} = \kappa_{\tilde{t}_i} \circ \gamma^{-1}$ where $\gamma : (\theta, \tilde{t}_{-i}[s_{-i}]) \mapsto (\theta, \tilde{t}_{-i}[s_{-i}], s_{-i})$. By construction,

$$\operatorname{marg}_{\Theta \times L \times S_{-i}} \widetilde{\pi} = \pi \circ \operatorname{proj}_{\Theta \times L \times S_{-i}}^{-1} \circ \mu^{-1} \circ \gamma^{-1} \circ \operatorname{proj}_{\Theta \times L \times S_{-i}}^{-1}$$
$$= \pi \circ \operatorname{proj}_{\Theta \times L \times S_{-i}}^{-1}$$
$$= \operatorname{marg}_{\Theta \times L \times S_{-i}} \pi$$

where the second equality follows because $\operatorname{proj}_{\Theta \times L \times S_{-i}} \circ \gamma \circ \mu$ is the identity mapping on $\operatorname{support}(\operatorname{marg}_{\Theta \times L \times S_{-i}}\pi)$. However, s_i is the only best reply to the belief $\operatorname{marg}_{\Theta \times S_{-i}}\pi$ which is the same as $\operatorname{marg}_{\Theta \times S_{-i}}\widetilde{\pi}$. Hence, $S_i^{\infty}[\widetilde{t}_i] = \{s_i\}$. Finally, \widetilde{t}_i is indeed a finite type since $\operatorname{support}_{\widetilde{t}_i}$ is a finite set and consists entirely of finite types.

A.3 Proof of Lemma 3

In this proof, we only require that Θ is a compact metric space equipped with metric d^0 . Let $j \in \{1, 2, ..., n\}$ denote a generic player. Recall that the universal type space T_j^* endowed with the product topology is a compact metrizable space. The compatible metric d_j on T_j^* used in the proof is the one obtained from the Prohorov distance between beliefs of the same order.² Specifically, for any $t_j, t'_j \in T_j^*$, let $d_j^1(t_j^1, t'_j^1)$ be the Prohorov distance between t_j^1 and

$$d(\mu, \mu') = \inf \{ \varepsilon > 0 : \mu(E) \le \mu'(E^{\varepsilon}) + \varepsilon \text{ for all Borel set } E \subseteq Y \}$$

²Let Y be an arbitrary compact metric space endowed with metric ρ and the Borel σ -algebra. For any two $\mu, \mu' \in \Delta(Y)$, the Prohorov distance between μ and μ' is defined as

 $t_j^{\prime 1}$ (recall $t_j^1, t_j^{\prime 1} \in \Delta(\Theta)$). Recursively, for any integer $k \ge 2$, and $t_j, t_j^{\prime} \in T_j^*$, let $d_j^k \left(t_j^k, t_j^{\prime k} \right)$ be the Prohorov distance between t_j^k and $t_j^{\prime k}$ where $t_j^k, t_j^{\prime k} \in \Delta\left(\Theta \times T_{-j}^{k-1}\right)$ in which T_{-j}^{k-1} is the space of all $(k-1)^{th}$ -order beliefs of player j's opponents and $\Theta \times T_{-j}^{k-1}$ is equipped with the metric ρ_{-j}^{k-1} defined as $\rho_{-j}^{k-1} \left(\left(\theta, t_{-j}^{k-1} \right), \left(\theta', t_{-j}^{\prime k-1} \right) \right) \equiv \max\left(d^0\left(\theta, \theta' \right), \max_{j' \ne j} d_{j'}^{k-1}\left(t_{j'}', t_{j'} \right) \right)$. Let $d_j\left(t_j, t_j' \right) \equiv \sum_{k=1}^{\infty} 2^{-k} d_j^k \left(t_j^k, t_j^{\prime k} \right)$, i.e., d_j is the product metric which metrizes the product topology on T_j^* .

Lemma 3 For any type $\bar{t}_i \in T_i^*$, there is a sequence of finite types $(t_i(m))_{m=1}^{\infty}$ such that $S_i^{\infty}[t_i(m)] = S_i^{\infty}[\bar{t}_i]$ for all m and $\lim_{m\to\infty} t_i(m) = \bar{t}_i$.

Proof. We divide the proof into three steps.

Step 1. Construct the sequence of finite types.

Since T_j^* is a compact metric space, for each natural number m, T_j^* can be covered by finitely many open balls with radius 1/2m. Let $\mathcal{T}_{j,m}$ be the finite measurable partition of T_j^* induced from these open balls and thus for any $T_j \in \mathcal{T}_{j,m}$, and t_j and t'_j in T_j , d_j $(t_j, t'_j) < 1/m$. Second, let $\mathcal{T}_{j,0}$ be the finite measurable partition induced by rationalizable sets, i.e., for any $T_j \in \mathcal{T}_{j,0}, t_j, t'_j \in T_j$ iff $S_j^{\infty}[t_j] = S_j^{\infty}[t'_j]$.³ Let $\widetilde{\mathcal{T}}_{j,m}$ be the join (coarsest common refinement) of $\mathcal{T}_{j,0}$ and $\mathcal{T}_{j,m}$. Let $f_{j,m}: T_j^* \to \widetilde{\mathcal{T}}_{j,m}$ be the mapping such that $f_{j,m}(t_j) = \widetilde{t}_{j,m}$ iff $t_j \in \widetilde{t}_{j,m}$. Moreover, for each $\widetilde{t}_{j,m} \in \widetilde{\mathcal{T}}_{j,m}$, select arbitrarily a type $t_{j,m} \in \widetilde{t}_{j,m}$. It follows that

$$d_j(t_j, t_{j,m}) < 1/m, \forall t_j \in \widetilde{t}_{j,m}.$$
(1)

Define a sequence of finite models $\left(\left(\Theta \times \widetilde{T}^m, \widetilde{\kappa}^m\right)\right)_{m=1}^{\infty}$ by letting $\widetilde{T}_j^m \equiv \widetilde{T}_{j,m}$, and for each $\widetilde{t}_{j,m} \in \widetilde{T}_j^m$,

$$\widetilde{\kappa}_{\widetilde{t}_{j,m}}^{m}\left[\left(\theta,\widetilde{t}_{-j,m}\right)\right] \equiv \kappa_{t_{j,m}}^{*}\left[\left\{\left(\theta,t_{-j}\right):f_{-j,m}\left(t_{-j}\right)=\widetilde{t}_{-j,m}\right\}\right], \forall \left(\theta,\widetilde{t}_{-j,m}\right) \in \Theta \times \widetilde{T}_{-j}^{m}.$$
 (2)

Note $\tilde{t}_{j,m}$ denotes both a subset of T_j^* and a type in the model $\left(\Theta \times \tilde{T}^m, \tilde{\kappa}^m\right)$. We will write $\tilde{t}_{j,m} \in \tilde{T}_{j,m}$ for the former and $\tilde{t}_{j,m} \in \tilde{T}_j^m$ for the latter when necessary. Let $\bar{t}_i(m) \equiv f_{i,m}(\bar{t}_i)$ where $E^{\varepsilon} \equiv \{y \in Y : \inf_{y' \in E} \rho(y, y') < \varepsilon\}$. It is known that the Prohorov metric metrizes the weak*-topology on $\Delta(Y)$ (see (Dudley, 2002, 11.3.3. Theorem)).

³Measurability follows from upper hemicontinuity (u.h.c.) of $S_j^{\infty}[\cdot]$: If $A'_j \subseteq A_j$ is 1-minimal in the sense that there is no type t_j with $S_j^{\infty}[t_j] \subsetneq A'_j$, then u.h.c. implies $\{t_j: S_j^{\infty}[t_j] = A'_j\} = \{t_j: S_j^{\infty}[t_j] \subseteq A'_j\}$ is open and hence measurable; if $A'_j \subseteq A_j$ is 2-minimal in the sense that $S_j^{\infty}[t_j] \subsetneq A'_i$ iff $S_j^{\infty}[t_j]$ is 1-minimal then $\{t_j: S_j^{\infty}[t_j] = A'_j\} = \{t_j: S_j^{\infty}[t_j] \subseteq A'_j\} \setminus \{t_j: S_j^{\infty}[t_j] \text{ is } 1-\text{minimal}\}$ is measurable, and so on. Since A_j is a finite set, every $S_j^{\infty}[t_j]$ is k-minimal for some k and thus $\{t_j: S_j^{\infty}[t_j] = A'_j\}$ is measurable, $\forall A'_j \subseteq A_j$. for every m. Step 2 and Step 3 below show that $\lim_{m\to\infty} \overline{t}_i(m) = \overline{t}_i$ and $S_i^{\infty}[\overline{t}_i(m)] \supseteq S_i^{\infty}[\overline{t}_i]$ for all m. Since $S_i^{\infty}[\cdot]$ is upper hemicontinuous and $\lim_{m\to\infty} \overline{t}_i(m) = \overline{t}_i$, it follows that $S_i^{\infty}[\overline{t}_i(m)] = S_i^{\infty}[\overline{t}_i]$ for sufficiently large m, say $m \ge \overline{m}$. We then define $t_i(m) = \overline{t}_i(\overline{m} + m), \forall m$ and $(t_i(m))_{m=1}^{\infty}$ is the desired sequence.

Step 2. For each m and each $t_j \in T_j^*$, $S_j^{\infty}[f_{j,m}(t_j)] \supseteq S_j^{\infty}[t_j]$.

First, for each $\tilde{t}_{j,m} \in \tilde{T}_j^m$, we define $\overline{S}_j [\tilde{t}_{j,m}] = S_j^\infty [t_{j,m}]$. We show that $\overline{S}_j [\cdot]$ satisfies the best-reply property on the model $(\Theta \times \tilde{T}^m, \tilde{\kappa}^m)$ (see (Dekel et al., 2007, Definition 1)). To see this, suppose that $s_j \in \overline{S}_j [\tilde{t}_{j,m}]$. Since $\overline{S}_j [\tilde{t}_{j,m}] = S_j^\infty [t_{j,m}]$, $s_j \in S_j^\infty [t_{j,m}]$. Thus, $s_j \in BR_j (\operatorname{marg}_{\Theta \times S_{-j}} \pi)$ for some $\pi \in \Delta (\Theta \times T_{-j}^* \times S_{-j})$ which is valid for $t_{j,m}$.

Define
$$\widetilde{\pi} \in \Delta \left(\Theta \times \widetilde{T}_{-j}^m \times S_{-j} \right)$$
 such that
 $\widetilde{\pi} \left[\left(\theta, \widetilde{t}_{-j,m}, s_{-j} \right) \right] \equiv \pi \left(\left\{ \left(\theta, t_{-j}, s_{-j} \right) : f_{-j,m} \left(t_{-j} \right) = \widetilde{t}_{-j,m} \right\} \right), \forall \left(\theta, \widetilde{t}_{-j,m}, s_{-j} \right)$ (3)

Since π is valid for $t_{j,m}$, $\operatorname{marg}_{\Theta \times T^*_{-j}} \pi = \kappa^*_{t_{j,m}}$. Hence, by (2), $\operatorname{marg}_{\Theta \times \widetilde{T}^m_{-j}} \widetilde{\pi} = \widetilde{\kappa}^m_{\widetilde{t}_{j,m}}$. Moreover,

$$\begin{aligned} &\widetilde{\pi}\left(\left\{\left(\theta, \widetilde{t}_{-j,m}, s_{-j}\right) : s_{-j} \in \overline{S}_{-j} \left[\widetilde{t}_{-j,m}\right]\right\}\right) \\ &= \pi\left\{\left(\theta, t_{-j,}, s_{-j}\right) : f_{-j,m}\left(t_{-j}\right) = \widetilde{t}_{-j,m} \text{ and } s_{-j} \in \overline{S}_{-j}\left[\widetilde{t}_{-j,m}\right]\right\} \\ &= \pi\left\{\left(\theta, t_{-j,}, s_{-j}\right) : f_{-j,m}\left(t_{-j}\right) = \widetilde{t}_{-j,m} \text{ and } s_{-j} \in S_{-j}^{\infty}\left[t_{-j,m}\right]\right\} \\ &= \pi\left(\left\{\left(\theta, t_{-j}, s_{-j}\right) : s_{-j} \in S_{-j}^{\infty}\left[t_{-j}\right]\right\}\right) \\ &= 1\end{aligned}$$

where the first equality follows from (3), the second follows because $\overline{S}_{-j} [\tilde{t}_{-j,m}] = S_{-j}^{\infty} [t_{-j,m}]$, the third follows because every $t_{-j} \in \tilde{t}_{-j,m}$ has the same rationalizable set as $t_{-j,m}$, and the last is because π is valid for $t_{j,m}$. Finally, since $s_j \in BR_j (\operatorname{marg}_{\Theta \times S_{-j}} \pi)$ and $\tilde{\pi}$ and π have the same marginal distribution on $\Theta \times S_{-j}$, it follows that $s_j \in BR_j (\operatorname{marg}_{\Theta \times S_{-j}} \tilde{\pi})$. Hence, $\overline{S}_j [\cdot]$ satisfies the best-reply property on $(\Theta \times \tilde{T}^m, \tilde{\kappa}^m)$. Thus, by (Dekel et al., 2007, Proposition 4), $\overline{S}_j [\tilde{t}_{j,m}] \subseteq S_j^{\infty} [\tilde{t}_{j,m}]$, and moreover, since $\overline{S}_j [\tilde{t}_{j,m}] = S_j^{\infty} [t_{j,m}]$, we obtain $S_j^{\infty} [t_{j,m}] \subseteq S_j^{\infty} [\tilde{t}_{j,m}]$ and because every $t_j \in \tilde{t}_{j,m}$ has the same rationalizable set as $t_{j,m}$, we get $S_j^{\infty} [t_j] \subseteq S_j^{\infty} [f_{j,m}(t_j)]$.

Step 3. $\lim_{m \to \infty} \sup_{t_j \in T_i^*} d_j \left(f_{j,m} \left(t_j \right), t_j \right) = 0.$

For each $t_j \in T_j^*$, let $\tilde{t}_{j,m} = f_{j,m}(t_j)$. We show that the k^{th} -order belief of $\tilde{t}_{j,m}$ (viewed as a type in the model $\left(\Theta \times \tilde{T}^m, \tilde{\kappa}^m\right)$) converges to t_j^k and the convergence is uniform in t_j . We

prove this by induction on k. For k = 1, observe that by (2) $\tilde{t}_{j,m}^1 = t_{j,m}^1$. By (1), $d_j\left(t_j, \tilde{t}_{j,m}\right) = d_j\left(t_j, t_{j,m}\right) < 1/m$, and since $d_j^1\left(\tilde{t}_{j,m}^1, t_j^1\right) \le d_j\left(\tilde{t}_{j,m}, t_j\right)$, $\lim_{m\to\infty} \sup_{t_j\in T_j^*} d_j^1\left(\tilde{t}_{j,m}^1, t_j^1\right) = 0$.

Now consider k > 1. Let $\varepsilon \in (0,1)$ and we show that for sufficiently large m, $d_j^k(\tilde{t}_{j,m}^k, t_j^k) < \varepsilon$ for all $t_j \in T_j^*$. By the induction hypothesis, there is some $\overline{m}(\varepsilon)$ such that for any $m > \overline{m}(\varepsilon)$, $\max_{j' \neq j} d_{j'}^{k-1} \left(f_{j',m}(t_{j'})^{k-1}, t_{j'}^{k-1} \right) < \varepsilon/2$ for all $t_{-j} = (t_{j'})_{j' \neq j} \in T_{-j}^*$. Consider $m > \{2/\varepsilon, \overline{m}(\varepsilon)\}$. Recall that d_j^k is the Prohorov metric on the space of all k^{th} -order beliefs. Since $\tilde{t}_{j,m}$ is a finite type, it suffices to verify that for each $(\theta, \tilde{t}_{-j,m}^{k-1})$ in the support of $\tilde{t}_{j,m}$, we have

$$\begin{aligned} \tilde{t}_{j,m}^{k} \left[\left(\theta, \tilde{t}_{-j,m}^{k-1} \right) \right] &= \kappa_{t_{j,m}}^{*} \left(\left\{ \left(\theta, t_{-j} \right) : f_{-j,m} \left(t_{-j} \right)^{k-1} = \tilde{t}_{-j,m}^{k-1} \right\} \right) \\ &\leq \kappa_{t_{j,m}}^{*} \left(\left(\theta, \tilde{t}_{-j,m}^{k-1} \right)^{\varepsilon/2} \right) \\ &< t_{j}^{k} \left(\left(\theta, \tilde{t}_{-j,m}^{k-1} \right)^{\varepsilon} \right) + \varepsilon \end{aligned}$$

where the first equality follows from (2); the first inequality follows because $f_{-j,m} (t_{-j})^{k-1} = \tilde{t}_{-j,m}^{k-1}$ implies $\max_{j'\neq j} d_{j'}^{k-1} (t_{j'}^{k-1}, \tilde{t}_{j',m}^{k-1}) < \varepsilon/2$ (since $m > \overline{m}(\varepsilon)$); the second follows because by (1), $d_j^k (t_{j,m}^k, t_j^k) < 1/m < \varepsilon/2$ (since $m > 2/\varepsilon$). Thus, for $m > \{2/\varepsilon, \overline{m}(\varepsilon)\}$, $d_j^k (f_{j,m}(t_j)^k, t_j^k) < \varepsilon$ for all $t_j \in T_j^*$. Since $\varepsilon > 0$ is arbitrary, the induction step follows.

References

- Chen, Y.-C., 2011. A structure theorem for rationalizability in the normal form of dynamic games, mimeo.
- Dekel, E., Fudenberg, D., Morris, S., 2006. Topologies on types. Theoretical Econ. 1, 275–309.
- Dekel, E., Fudenberg, D., Morris, S., 2007. Interim correlated rationalizability. Theoretical Econ. 2, 15–40.
- Dudley, R., 2002. Real Analysis and Probability. Cambridge University Press, Cambridge.
- Mertens, J.-F., Zamir, S., 1985. Formulation of Bayesian analysis for games with incomplete information. Int. J. Game Theory 14, 1–29.
- Weinstein, J., Yildiz, M., 2007. A structure theorem for rationalizability with application to robust predictions of refinements. Econometrica 75, 365–400.