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GENERICITY AND ROBUSTNESS OF FULL SURPLUS EXTRACTION

BY YI-CHUN CHEN AND SIYANG XIONG1

We study whether priors that admit full surplus extraction (FSE) are generic, an
issue that becomes a gauge to evaluate the validity of the current mechanism design
paradigm. We consider the space of priors on the universal type space, and thereby
relax the assumption of a fixed finite number of types made by Crémer and McLean
(1988). We show that FSE priors are topologically generic, contrary to the result of
Heifetz and Neeman (2006) that FSE is generically impossible, both geometrically and
measure-theoretically. Instead of using the BDP approach or convex combinations of
priors adopted in Heifetz and Neeman (2006), we prove our genericity results by show-
ing a robustness property of Crémer–McLean mechanisms.

KEYWORDS: Surplus extraction, information rents, universal type space, common
prior, genericity, residual set.

1. INTRODUCTION

IN ECONOMIC MODELS, agents with private information about their indepen-
dent values retain some informational rent (Myerson (1981)). However, the
source of the informational rent is not privacy; rather, it is the independence
of information among agents. In a seminal paper, Crémer and McLean (1988;
hereafter, CM) showed that in a classical mechanism design model (hereafter,
the classical model), a mechanism designer can fully extract agents’ rent even
if their values are only slightly correlated. Since “nearly all” models have cor-
related information, full surplus extraction (FSE) should be a generic phe-
nomenon. CM’s result thus implies that private information is (generically)
irrelevant, which seems patently false in practice. As McAfee and Reny wrote,

“The results (full rent extraction) cast doubt on the value of the current mechanism design
paradigm as a model of institutional design” (McAfee and Reny (1992, p. 400)).2

1We thank the editor and five anonymous referees for insightful comments which have greatly
improved the paper. For their helpful comments and discussion, we also thank Tilman Börgers,
Eddie Dekel, Jeff Ely, Eduardo Faingold, Songying Fang, Alia Gizatulina, Aviad Heifetz, Martin
Hellwig, Jinwoo Kim, Maciej Kotowski, Takashi Kunimoto, Jihong Lee, Qingmin Liu, Xiao Luo,
Claudio Mezzetti, Hervé Moulin, Daisuke Oyama, Wolfgang Pesendorfer, Marciano Siniscalchi,
Yeneng Sun, Olivier Tercieux, Chih-Chun Yang, and the participants in seminars/conferences
at Academia Sinica, Games 2012, the Kansas Workshop on Economic Theory, Rice Univer-
sity, Shanghai University of Finance and Economics, University of Tokyo, and the 11th and the
12th SAET Conferences. We also gratefully acknowledge financial support from National Science
Foundation Grant SES-1227620 and Singapore Ministry of Education Academic Research Fund
Tier 1. All remaining errors are our own.

2CM proved their result in the single-object private-value auction setting with a fixed finite
type space. McAfee and Reny (1992) extended CM’s result and characterized FSE in a general
mechanism design setting with a continuum of types whose beliefs are given by continuous density
functions.
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Many explanations have been offered to address this FSE critique. We now
know that CM’s genericity result does not hold if any of the following essential
assumptions of the classical model is violated: risk neutrality, unlimited liabil-
ity, absence of collusion among agents, and lack of competition among sellers
(see Robert (1991), Laffont and Martimort (2000), Che and Kim (2006), and
Peters (2001)). Nevertheless, the classical model that incorporates all these as-
sumptions is still commonly used. By modifying these essential assumptions of
the classical model, the studies just cited demonstrate only that the modified
models are immune to the FSE critique, but do not explain why the classical
model itself generates predictions that contradict our observations. To provide
such an explanation, we must be able to attribute the genericity of FSE to as-
sumptions that are inessential to the classical model and yet are critical to the
genericity of FSE. Failing to find such inessential assumptions would invite re-
examination of the classical model and all the theories based on it.

In an important paper, Heifetz and Neeman (2006; hereafter, HN) identified
one such assumption. In particular, HN pointed out that CM’s genericity result
hinges on their implicit common-knowledge assumption that each agent has a
fixed finite number of types. However, there is no a priori finite bound on the
number of types in mechanism design problems. This common-knowledge as-
sumption is therefore inessential to the classical model. Relaxing this assump-
tion, we will need to study the genericity/nongenericity of FSE in the space of
general priors supported on an arbitrary number of types. Following this view,
HN proved that FSE priors are “negligible” (nongeneric) in both a geomet-
ric sense (i.e., they are contained in a proper face) and a measure-theoretical
sense (i.e., they are contained in a finitely shy set, as defined in Anderson and
Zame (2001)).3

In this paper, we also relax CM’s common-knowledge assumption of a fixed
finite number of types, and yet we prove that FSE is topologically generic. That
is, while the fixed finite number of types is an inessential assumption, it has no
effect on the genericity of FSE in the topological sense. More importantly, our
results imply that the classical model remains subject to the FSE critique.

We study private information modeled by (common) priors on the universal
type space (see Mertens and Zamir (1985) and Heifetz and Neeman (2006)).
The universal type space is a (Harsanyi) type space which embeds all possible
type spaces. Therefore, our approach not only relaxes the assumption of a fixed
finite number of types, but also entails no loss of generality (see Section 4.4).
Following Mertens, Sorin, and Zamir (1994), we endow the space of priors
with the standard weak∗ topology.4 We say a set is (topologically) generic if it

3Finite shyness extends the notion of shyness, originally proposed by Christensen (1974) and
rediscovered by Hunt, Sauer, and Yorke (1992). See Anderson and Zame (2001) for details.

4Agents choose their best strategies according to their expected utility, and the mechanism
designer chooses the optimal mechanism according to her expected revenue. The weak∗ topol-
ogy is the coarsest topology that makes these “expected values” continuous in beliefs and it is
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is a residual set, that is, it contains a countable intersection of open and dense
sets; a set is nongeneric if its complement is generic, that is, it is a meager set.5

We report two genericity results. We first consider the space of all priors,
which can be either finite or infinite. To address the technical difficulties as-
sociated with infinite priors, we follow McAfee and Reny (1992) and define a
prior to be (almost) FSE if, for any ε> 0, we can construct a mechanism that
surrenders at most a surplus of quantity ε to the agents, and moreover, it is
Bayesian incentive compatible and individually rational. Our first result is that
FSE is generic among all priors.6

We then study an important subclass of priors called models. A model is
a prior that is not a convex combination of other priors. In Section 3.4, we
discuss the sense in which every mechanism design problem associated with a
prior can be reduced to a mechanism design problem associated with models.
We show that HN’s geometric analysis and measure-theoretic analysis do not
apply to the space of models, whereas our topological analysis does apply and
our genericity result remains the same.

For simplicity, we focus throughout the main text on the single-object,
private-value auction environment, and we discuss general mechanism design
problems in Section 4.1. Unlike HN, we prove our genericity results by directly
studying the mechanism design problems on general priors.7 We consider a
class of mechanisms called Crémer–McLean mechanisms (CM mechanisms).
A CM mechanism is a second-price auction supplemented with side payments
(see Definition 7). The gist of our proof is a robustness property of CM mech-
anisms: for any ε> 0, if a CM mechanism extracts, for a prior µ, all of the total
surplus except for a quantity less than ε, it would continue to do so for any
prior in a small weak∗-neighborhood of µ. The notable feature of this robust-
ness property is that it applies to any priors in a large space (i.e., the universal
space) which approximates µ in a weak notion of proximity (i.e., the weak∗

topology).

often regarded as a coarse topology. Barelli (2009) and Chen and Xiong (2011) also adopted the
weak∗ topology on priors. Moreover, the definition of the measure-theoretic notion of gener-
icity adopted in HN also requires a topology on priors and HN took the weak∗ topology as an
important candidate for it. See Section 4.3 for more discussion on other topologies.

5Being residual and meager are standard notions of topological genericity (being typical)
and nongenericity (being negligible), respectively. This notion of genericity was also adopted in
Barelli (2009), Chen and Xiong (2011), Dekel, Fudenberg, and Morris (2006), and Ely and Pęski
(2011).

6That is, generically, FSE can be partially implemented. In Chen and Xiong (2013), we further
proved that, generically, FSE can be virtually Bayesian fully implemented in the sense of Abreu
and Matsushima (1992) and Duggan (1997). We discuss this in Section 4.2.

7HN’s genericity result relies upon a property of a prior called BDP which is due to Neeman
(2004). A prior satisfies the BDP property if it assigns probability 1 to a set of type profiles in
which no distinct types have the same belief. We showed in Chen and Xiong (2011) that priors that
satisfy the BDP property are topologically generic. Since BDP is necessary but not sufficient for
FSE (see HN’s Proposition 2), the genericity of BDP priors has no implication for the genericity
or nongenericity of FSE priors.



828 Y.-C. CHEN AND S. XIONG

Given this robustness property, the intuition of our genericity results be-
comes transparent. For any ε> 0, let Fε denote the set of priors for which all
of the total surplus except for a quantity less than ε can be extracted via CM
mechanisms. Fε is open by the robustness property; Fε is also dense because it
contains all FSE priors that have been shown to be dense by the existing litera-
ture. That is, the set of priors for which FSE is approximately achieved (i.e., Fε

for any arbitrarily small ε) is both open and dense. Since the set of FSE priors
contains the residual set

⋂∞
n=1 F1/n, it follows that FSE is generic.

Economic modelers obviously would not want to rule out the correlated pri-
vate information, which admits FSE, as proved in CM and MR. In this paper,
we strengthen their results by showing that the mechanisms they employ would
do almost equally well for all nearby priors. Consequently, for a mechanism de-
sign problem in a classical model with a slightly misspecified prior, the solution
under correlated information (in the sense of CM and MR) is robust, while the
solution under independent information is not robust. This imposes a funda-
mental restriction for economic modelers—revenue maximization aligns with
robustness only under correlated information.8

Finally, we note that the fact that HN and this paper reach the opposite
conclusions is due solely to the different perspectives we take, with HN tak-
ing the geometric/measure-theoretical approach while we take the topological
approach. Since the space of priors is an infinite-dimensional space for which
there is no consensus on the notion of genericity, deciding which one is more
appropriate depends on the specific context.9 Despite the difference, our result
shows that the measure-theoretic nongenericity of FSE represents a knife-edge
situation because, for any ε> 0, the set Fε, being open and dense, is not neg-
ligible even in the measure-theoretic sense.10

8The following quote illustrates how our results strengthen the FSE critique:

“It is a reasonable position that in the analysis of a social or physical system, the prop-
erties one should first focus on are those that enjoy persistency, that is, stability under
perturbations, and are typical—informally, those whose qualitative characteristics do not
depend too precisely on the environmental variables (persistency) and that hold but “ex-
ceptionally” in all admissible environments (typicality). The underlying justification for
both desiderata is the same: In a world that is not observed, or perhaps not even given
to us, in a very precise manner, only the persistent and typical have a good chance to be
observed” (Mas-Colell (1985, pp. 316–317)).

That is, our results show that according to the classical model, the FSE property is among the
persistent (robust) and typical (generic) properties that “have a good chance to be observed.”

9Anderson and Zame (2001) pointed out some weakness of the residual (meager) set as the
notion of genericity (nongenericity). Stinchcombe (2001) discussed some caveats of the preva-
lence (shy) set as the notion of genericity (nongenericity).

10This follows because an open set cannot be finitely shy (see Anderson and Zame (2001)).
Thus, this observation holds whenever finite shyness is defined using a topology that is finer than
the weak∗ topology.
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The rest of this paper is organized as follows. Section 2 contains notations
and definitions. Section 3 presents our main results. Section 4 discusses related
issues. Section 5 concludes.

2. PRELIMINARIES

Throughout this paper, for any compact metric space X with the metric dX ,
we endow X with the Borel σ-algebra. Let ∆(X) denote the space of all proba-
bility measures on the Borel σ-algebra endowed with the weak∗ topology. The
weak∗ topology is metrizable under the Prohorov metric, defined as

ρ
(
µ%µ′) = inf

{
ε> 0 :µ(E)≤ µ′(Eε

)
+ ε%∀Borel set E ⊂X

}
%(1)

∀µ%µ′ ∈ ∆(X)%

where Eε ≡ {x′ : infx∈E dX(x′%x) < ε} (see Dudley (2002, Theorem 11.3.3)). All
product spaces are endowed with the product topology, and subspaces are
endowed with the relative topology. The support of a probability measure
µ ∈ ∆(X), denoted by Suppµ, is the intersection of all closed sets with mea-
sure 1 under µ. For every finite set F ⊂X , let |F | denote the cardinality of F .

2.1. Priors and Belief Spaces

One object is for sale. Let I be a finite set of bidders. For simplicity, we as-
sume that, for every i ∈ I, Vi = [0%1] is the set of bidder i’s possible values of
the object, a set endowed with the Euclidean topology. Let Θ∗

i be the com-
pact metric, private-value universal type space on V = ∏

i∈I Vi = [0%1]|I| which
contains all possible types of bidder i (see Mertens and Zamir (1985), Heifetz
and Neeman (2006, pp. 228–229), and also Section 4.4). Let vi :Θ∗

i → Vi and
bi :Θ∗

i → ∆(Θ∗
−i) be the continuous functions through which each θi ∈Θ∗

i iden-
tifies a value vi(θi) and a belief bi(θi) of bidder i. Let Θ∗ = ∏

i∈I Θ
∗
i be the

space of all bidders’ type profiles and Θ∗
−i = ∏

j +=iΘ
∗
j be the space of bidder

i’s opponents’ type profiles. Let di denote the metric on Θ∗
i , d−i the metric

on Θ∗
−i, and d the metric on Θ∗, where d−i(θ−i% θ′

−i) = maxj +=i dj(θj% θ′
j) and

d(θ%θ′)= maxj∈I dj(θj% θ′
j). For each θ ∈Θ∗, we denote by θi the type of bidder

i under θ, and we often save the notation to write vi(θ) and bi(θ) instead of
vi(θi) and bi(θi).

A belief subspace Θ is a nonempty and compact subset of Θ∗ such that, for
every θ ∈Θ, {θi}×Suppbi(θ) is a subset of Θ. For any µ ∈ ∆(Θ∗), denote by µi

the marginal distribution of µ on Θ∗
i . A probability measure µ ∈ ∆(Θ∗) is said

to be a (common) prior if, for every bounded measurable function ϕ :Θ∗ → R,
∫

Θ∗
i

(∫

Θ∗
−i

ϕ(θi% θ−i)bi(θi)[dθ−i]
)
µi[dθi] =

∫

Θ∗
ϕ(θ)µ[dθ]% ∀i)(2)
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Let P ⊂ ∆(Θ∗) be the set of all priors and let dP denote the Prohorov metric
on P . The support of a prior µ is a belief subspace (see Mertens, Sorin, and
Zamir (1994, p. 147, item 2)) and is denoted by Θµ.11 A finite prior is a prior
whose support is a finite set. Let P f denote the space of finite priors. A model
is a prior µ such that there exist no priors π and v and α ∈ (0%1) such that
Θπ += Θv and µ = απ + (1 − α)v. Let M denote the space of models. For
any set E ⊂ Θ∗, let Ei and E−i denote the projections of E into Θ∗

i and Θ∗
−i,

respectively. The following result will be used later.

LEMMA 1—Mertens, Sorin, and Zamir (1994, Theorem 3.1): P f is dense
in P .

2.2. Mechanisms and Surplus Extraction

A mechanism designer tries to sell the object to the agents (i.e., bidders) in I.
By the revelation principle, we can restrict attention to direct mechanisms with-
out loss of generality. A (direct) mechanism on a belief subspace Θ is a list of
measurable functions (q%m) ≡ (qi :

∏
j∈I Θj → [0%1]%mi :

∏
j∈I Θj → R)i∈I sat-

isfying
∑

i∈I qi(θ) ≤ 1 for every θ ∈ ∏
i∈I Θi. For each profile of reports θ, qi(θ)

specifies the probability that bidder i wins the object and mi(θ) specifies how
much bidder i pays.

Fix any mechanism (q%m) defined on a belief subspace Θ. Let ui(θ′
i% θ−i|θi%

q%m) denote the (expected) payoff of type θi, when he reports θ′
i and the other

bidders report θ−i ∈Θ−i, that is,

ui

(
θ′
i% θ−i|θi%q%m

)
≡ vi(θi)qi

(
θ′
i% θ−i

)
−mi

(
θ′
i% θ−i

)
)(3)

Furthermore, let Ui(θ′
i|θi%q%m) denote the interim expected payoff of type θi

when he reports θ′
i and the other bidders truthfully reveal their types, that is,

Ui

(
θ′
i|θi%q%m

)
=

∫

Θ−i

ui

(
θ′
i% θ−i|θi%q%m

)
bi(θi)[dθ−i])

To simplify our notation, we write Ui(θi|q%m) for Ui(θi|θi%q%m), which is the
interim expected payoff of type θi when all bidders truthfully reveal their types.

DEFINITION 1: A mechanism (q%m) defined on a belief subspace Θ is indi-
vidually rational (IR) if

Ui(θi|q%m)≥ 0 for every (i% θ) ∈ I ×Θ)

11In the literature, a belief subspace that is the support of some common prior is called a
consistent belief subspace. Throughout the paper, we restrict our attention to consistent belief
subspaces, and we omit “consistent” for simplicity.



GENERICITY OF FULL SURPLUS EXTRACTION 831

DEFINITION 2: A mechanism (q%m) defined on a belief subspace Θ is
(Bayesian) incentive compatible (IC) if

Ui(θi|q%m)≥ Ui

(
θ′
i|θi%q%m

)
for every

(
i% θ%θ′) ∈ I ×Θ×Θ)

That is, (q%m) on Θ satisfies IC iff truthful reporting constitutes a Bayesian
Nash equilibrium on Θ.

DEFINITION 3: For any prior µ and ε ≥ 0, a mechanism (q%m) defined on
Θµ achieves ε-surplus-extraction (ε-SE) if

∫

Θµ

[
max
i∈I

vi(θ)−
∑

i∈I
mi(θ)

]
µ[dθ] ≤ ε)

The maximal social surplus is
∫
Θµ maxi∈I vi(θ)µ[dθ], while the surplus col-

lected by the seller is
∫
Θµ

∑
i∈I mi(θ)µ[dθ]. Under a mechanism that achieves

ε-SE, at most a surplus of quantity ε is surrendered to the bidders. Following
McAfee and Reny (1992, p. 400), we now define (almost) full surplus extraction
as follows.

DEFINITION 4: A prior µ is an (almost) full-surplus-extraction (FSE) prior if,
for any ε> 0, there exists a mechanism (q%m) on Θµ that achieves IR, IC, and
ε-SE.

We use F to denote the set of FSE priors in P . Throughout the paper, we
focus on a class of mechanisms defined as follows. Let Θ be a belief subspace.
The first-order belief of θi ∈ Θi, denoted by b1

i (θi) ∈ ∆(V ), is the belief of θi

over the value profiles of all bidders. That is,

b1
i (θi)[V ] = b1

i (θi)
[{
θ−i ∈Θ−i :

(
vi(θi)%v−i(θ−i)

)
∈ V

}]
%

∀Borel set V ⊂ V )

DEFINITION 5: A mechanism (q%m) defined on a belief subspace Θ is said
to be a first-order mechanism if, for every θ%θ′ ∈Θ, b1

i (θi)= b1
i (θ

′
i) for all i ∈ I

implies (qi(θ)%mi(θ)) = (qi(θ′)%mi(θ′)) for all i ∈ I.

That is, the allocation and the payment of a first-order mechanism depend
only on the first-order beliefs of the reported types. One mechanism that will
play a crucial role in our analysis is the second-price auction (with an arbitrary
tie-breaking rule), which we denote by (q∗%m∗). That is, (q∗%m∗) is defined on
Θ∗ such that

max
i∈I

vi(θ) =
∑

i∈I
vi(θi)q

∗
i (θi% θ−i);(4)

m∗
i (θ) = q∗

i (θ)× max
j +=i

vj(θ))
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It is well known that (q∗%m∗) is IR and IC. Furthermore, (q∗%m∗) is a first-
order mechanism. Indeed, (q∗%m∗) depends only on the reported values, that
is, for every θ%θ′ ∈ Θ, vi(θi) = vi(θ′

i) for all i ∈ I implies (q∗
i (θ)%m

∗
i (θ)) =

(q∗
i (θ

′)%m∗
i (θ

′)) for all i ∈ I. Since b1
i (θi) = b1

i (θ
′
i) implies vi(θi) = vi(θ′

i), it
follows that (q∗%m∗) is a first-order mechanism.

2.3. Genericity

In a topological space, a set is said to be nowhere dense if its closure has no
interior point. A countable union of nowhere dense sets is called a meager set.
The complement of a meager set is called a residual set. That is, a residual set
contains a countable intersection of open and dense sets.

DEFINITION 6: In a topological space X , we say a subset of X is generic if it
is a residual set; we say a subset of X is nongeneric if it is a meager set.

The notions of residual sets and meager sets are usually defined and studied
in a Baire space. A Baire space is a topological space in which every nonempty
open set is not meager. A residual set in a Baire space is dense (and thus
nonempty) and not meager. Lemma 2 shows that the two spaces of priors P
and M that we study in this paper are both Baire spaces. Lemma 3 provides
a technical result that will be used later. The proofs are relegated to the Ap-
pendix.

LEMMA 2: Both P and M are Baire spaces.

LEMMA 3: If Y is a dense subset of X and U is generic in X , then U ∩ Y is
generic in Y .

3. MAIN RESULTS

In this section, we present our main results. We first define a class of mech-
anisms called Crémer–McLean mechanisms (CM mechanisms), which is a spe-
cial class of first-order mechanisms. Second, we establish a robustness property
of CM mechanisms (Lemma 8). We then prove that full surplus extraction is
generic in the space of all priors (Theorem 1). Finally, we prove that the result
also holds for the space of all models (Theorem 2).

3.1. CM Mechanisms

Recall that (q∗%m∗) denotes the second-price auction defined on Θ∗.

DEFINITION 7: A mechanism (q%m) defined on Θ∗ is called a Crémer–
McLean (CM) mechanism if there exists a profile of continuous functions
(wi :V−i → R)i∈I such that qi(θ) = q∗

i (θ) and mi(θ) = m∗
i (θ)+wi(v−i(θ−i)) for

every (i% θ) ∈ I ×Θ∗.
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The function wi is often called a side-payment scheme for bidder i.12 It has
three distinct features. First, wi depends only on the reported values, which
implies that a CM mechanism depends only on the reported values. Conse-
quently, a CM mechanism is a first-order mechanism. Second, wi depends only
on the reports of bidder i’s opponents but not on bidder i’s report. As a result,
truthful reporting remains a weakly dominant strategy for every type in a CM
mechanism, as in a second-price auction. Finally, since (q∗%m∗) is fixed on Θ∗,
a CM mechanism can be identified with the side-payment scheme. Hence, we
write w for a CM mechanism and write (wi)i∈I or simply wi for side payments.
These properties are summarized in the following lemma.

LEMMA 4: Every CM mechanism is a first-order mechanism and it satisfies IC.

We now review CM’s FSE result as follows. Define

P f
n ≡

{
µ ∈ P f :

∣∣Θµ
i

∣∣ = n%∀i ∈ I
}
)

That is, P f
n is the set of priors whose supports are belief subspaces containing

exactly n types for each bidder. Pick any µ ∈ P f
n . Define the interim belief

matrix for bidder i as

Bµ
i ≡

[
bi(θi)[θ−i]

]
θi∈Θµ

i %θ−i∈Θµ
−i
%

where each row corresponds to a type θi of bidder i and his belief about his op-
ponents’ types, that is, [bi(θi)[θ−i]]θ−i∈Θµ

−i
. We say Bµ

i has full rank if its column
space has rank n, and µ has full rank if Bµ

i has full rank for every i ∈ I. Define

F cm ≡
{
µ ∈ P :∃ a CM mechanism w s.t. Ui(θi|w)= 0%

∀(i% θ) ∈ I ×Θµ
}
)

It is straightforward to verify that each µ in F cm is an FSE prior.13 Hereafter,
we say µ admits FSE in a CM mechanism if µ ∈ F cm. The FSE result in Crémer
and McLean (1988) implies the following lemma.

LEMMA 5: µ ∈ F cm if µ ∈ P f
n has full rank.

12A CM mechanism is defined everywhere on Θ∗. Alternatively, we may define a CM mech-
anism on a subspace Θµ. Or, equivalently, the side payment may be defined only on v−i(Θ

µ
−i)

rather than on V−i . Every such CM mechanism corresponds to a CM mechanism in our defini-
tion: since v−i(Θ

µ
−i) is a closed set, by the Tietze Extension theorem (see Aliprantis and Border

(2006, Theorem 2.47)) for any continuous w′
i :v−i(Θ

µ
−i) → R, there exists a continuous function

wi :V−i → R such that wi(̂v−i)=w′
i (̂v−i) for any v̂−i ∈ v−i(Θ

µ
−i).

13More precisely, for each µ ∈ F cm, we achieve 0-SE in a CM mechanism.
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Clearly, the set of priors that have full rank is open and dense in P f
n . This

is precisely the genericity result in Crémer and McLean (1988). However, as
Heifetz and Neeman (2006) argued, there is no a priori finite bound for the
number of types when we model a situation involving asymmetric information.
Hence, we should relax this assumption about the size of priors’ supports. This,
in turn, leads us to study the genericity of FSE in P .14

We introduce two more definitions. First, we say that a finite prior µ has full
support if Θµ = ∏

i∈I Θ
µ
i , that is, the support of µ is a product set. Note that

every finite prior that has full support is a model. Second, we say that a finite
prior µ has distinct values if vi(θ) = vj(θ′) implies i = j and θi = θ′

j for every
(i% j% θ%θ′) ∈ I × I ×Θµ ×Θµ. Define

F ∗ ≡
{

µ ∈
∞⋃

n=1

P f
n :µ has full rank, full support, and distinct values

}

)(5)

Thus, F ∗ ⊂ M. Now consider any µ ∈ F ∗. Since µ has full rank, we can em-
ploy the result in Crémer and McLean (1988) to construct a profile of func-
tions w̃ = (w̃i :Θ

µ
−i → R)i∈I that extracts all the surplus. Moreover, since µ

has distinct values, v−i(θ−i) += v−i(θ′
−i) for any θ−i% θ′

−i ∈ Θµ
−i with θ−i += θ′

−i.
Then, by the Tietze Extension theorem (see Aliprantis and Border (2006, The-
orem 2.47)), there exists a CM mechanism w = (wi :V−i → R)i∈I such that
wi(v−i(θ)) = w̃i(θ−i), that is, 0-SE is achieved under w. As a result, F ∗ ⊂ F cm.
We thus have the following result:

LEMMA 6: F ∗ ⊂ F cm ∩ M.

The next result shows that F ∗ is dense in P . Note that Lemmas 6 and 7 imply
that F cm ∩ M is dense in both M and P .

LEMMA 7: F ∗ is dense in P .

Lemma 7 is an immediate consequence of the following facts: (i) F ∗ is dense
in P f 15; (ii) P f is dense in P (Lemma 1).

14An alternative way to relax the common-knowledge assumption is to study the genericity of
FSE in Pf . However, we can show that Pf is meager (in Pf ), which implies that every subset of Pf

is both meager and residual. That is, Pf is not a Baire space, and the notion of residual sets is not a
sensible notion of genericity in Pf . To see that Pf is meager, define Pn ≡ {µ ∈ Pf : | suppµ| ≤ n}.
Clearly, Pf = ⋃∞

n=1 Pn and Pn is closed and has no interior in Pf . Hence, Pn is nowhere dense
and Pf is meager.

15To see the idea, consider the case with two bidders. In the following example, µ ∈ Pf is not a
model and has neither full rank nor distinct values. However, µm ∈ F ∗ for all large m and µm → µ
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3.2. Robustness of CM Mechanisms

For every CM mechanism w defined on Θ∗ and every ε> 0, define

Ωi(ε|w)≡
{
θi ∈Θ∗

i :Ui(θi|w) ∈ (0% ε)
}
% ∀i ∈ I)

That is, Ωi(ε|w) is the set of i’s types whose interim expected payoffs under
the CM mechanism w fall between 0 and ε. The following lemma provides a
preliminary robustness property of CM mechanisms, which will be used later
to prove our genericity results.

LEMMA 8: Let w be a CM mechanism defined on Θ∗. Then,
(a) for every i ∈ I, Ui(θi|w) is a continuous function in θi;
(b) for every ε%ε′ > 0, {µ ∈ P :µi[Ωi(ε|w)]> 1 − ε′%∀i ∈ I} is open.

Lemma 8 has two parts: part (a) says that the interim payoffs of the bidders
under a CM mechanism are continuous, which follows immediately from the
continuity of vi, wi, and bi; part (b) says that if µ assigns high probability to
types that retain only a small surplus, it is still the case for any µ′ sufficiently
close to µ. Part (b) follows from part (a) and the definition of the Prohorov
metric dP . The proof of Lemma 8 is standard and can be found in Chen and
Xiong (2013).

Before we prove our genericity result, we present a proposition. The propo-
sition says that if µ admits FSE in a CM mechanism, then we can construct
another CM mechanism that extracts most of the surplus in a neighborhood
around µ.

PROPOSITION 1: For any prior µ ∈ F cm and any ε> 0, there exists a CM mech-
anism w under which, for any ε′ > 0, we can find γ > 0 such that, for any prior µ′

with dP(µ′%µ) < γ, we have µ′
i[Ωi(ε|w)]> 1 − ε′ for every i ∈ I.

as m→ ∞:

µ v2 = 0 v2 = 1/2 v2 = 1

v1 = 0 1
4 0 0

v1 = 1 0 3
8

3
8

and

µm v2 = 0 v2 = 1/2 v2 = 1

v1 = 1
m

(
1 − 1

m

)
× 1

4
1

16m
1

16m

v1 = 1 − 1
m

1
16m

(
1 − 1

m

)
× 3

16

(
1 + 1

m

)
× 3

16

v1 = 1 − 1
2m

1
16m

(
1 + 1

m

)
× 3

16

(
1 − 1

m

)
× 3

16
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PROOF: Since µ ∈ F cm, there is a CM mechanism w′ such that Ui(θi|w′)= 0
for every (i% θ) ∈ I ×Θµ. Define a new CM mechanism w such that

wi(v−i)= w′
i(v−i)− ε

2
% ∀(i%v) ∈ I × V )

That is, the only difference between w and w′ is that the side payment in w is
always less than the side payment in w′ by ε

2 . Therefore, w is a CM mechanism
such that Ui(θi|w)= ε

2 ∈ (0% ε) for every (i% θ) ∈ I ×Θµ. Hence, µi[Ωi(ε|w)] =
1 for every i ∈ I. It therefore follows that µ ∈ {µ′ ∈ P :µ′

i[Ωi(ε|w)] > 1 −
ε′%∀i ∈ I}. Furthermore, by Lemma 8(b), {µ′ ∈ P :µ′

i[Ωi(ε|w)]> 1 −ε′%∀i ∈ I}
is open. As a result, there exists γ > 0 such that, for any µ′ with dP(µ′%µ) < γ,
we have µ′

i[Ωi(ε|w)]> 1 − ε′ for every i ∈ I. Q.E.D.

3.3. Genericity in the Space of Priors

In this subsection, we prove the genericity of FSE in P . Note that a CM
mechanism may not satisfy IR, and we have to deal with this issue in our proof.
In Lemma 9, we first provide a way to modify a CM mechanism so as to achieve
IR. The proof is relegated to the Appendix.

LEMMA 9: Let w be a CM mechanism defined on Θ∗, and let (q%m) be a
mechanism defined on Θ∗, as follows:

(
qi(θ)%mi(θ)

)
=

{(
q∗
i (θ)%m

∗
i (θ)+wi

(
v−i(θ)

))
% if Ui(θi|w) > 0;

(0%0)% if Ui(θi|w) ≤ 0)
(6)

Then, (q%m) is a first-order mechanism that achieves IR and IC on Θ∗.

Proposition 2 below says that if µ admits FSE in a CM mechanism, we can
construct a mechanism that is both IR and IC, and that extracts most of the
surplus in a neighborhood around µ.

PROPOSITION 2: For any prior µ ∈ F cm and any ε> 0, there exist γ > 0 and a
first-order mechanism (q%m) defined on Θ∗ such that, for any µ′ with dP(µ′%µ) <
γ, the mechanism (q%m) achieves IR, IC, and ε-SE on Θµ′ .

PROOF: By Proposition 1, there exists a CM mechanism w defined on Θ∗

and γ > 0 such that, for any µ′ with dP(µ′%µ) < γ, we have

µ′
i

[
Ωi

(
ε

4|I|
∣∣∣w

)]
> 1 − ε

4|M||I| % ∀i ∈ I%(7)

where

M ≡ max
θi∈Θ∗

i

∣∣Ui(θi|w)
∣∣ + 1)(8)
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Applying Lemma 9 to w, we can construct a first-order mechanism (q%m) de-
fined on Θ∗ that achieves IR and IC on Θ∗; moreover, by (6), it follows that

Ui(θi|q%m)= max
{
Ui(θi|w)%0

}
;(9)

qi(θ) = q∗
i (θ) if θi ∈Ωi

(
ε

4|I|
∣∣∣w

)
)(10)

We are now ready to show that (q%m) achieves ε-SE on Θµ′ for any µ′ with
dP(µ′%µ) < γ. First,

∫

Θµ′

[∑

i∈I
vi(θi)qi(θi% θ−i)−

∑

i∈I
mi(θ)

]
µ′[dθ](11)

=
∑

i∈I

∫

Θ
µ′
i

Ui(θi|q%m)µ′
i[dθi]

≤
∑

i∈I

[∫

Ωi((ε/(4|I|))|w)

Ui(θi|w)µ′
i[dθi]

+
∫

Θ
µ′
i \Ωi((ε/(4|I|))|w)

∣∣Ui(θi|w)
∣∣µ′

i[dθi]
]

≤ |I| ×
[

ε

4|I| +M × ε

4M|I|

]
= ε

2
%

where the first inequality follows from (9); the second inequality follows from
(7) and (8). Second,

∫

Θµ′

[
max
i∈I

vi(θ)−
∑

i∈I
vi(θi)qi(θi% θ−i)

]
µ′[dθ](12)

=
∫

Θµ′

[∑

i∈I
vi(θi)q

∗
i (θi% θ−i)−

∑

i∈I
vi(θi)qi(θi% θ−i)

]
µ′[dθ]

=
∫

Θµ′

[∑

i∈I
vi(θi)

[
q∗
i (θi% θ−i)− qi(θi% θ−i)

]]
µ′[dθ]

=
∑

i∈I

∫

Θ
µ′
i \Ωi((ε/(4|I|))|w)

vi(θi)
[
q∗
i (θi% θ−i)− qi(θi% θ−i)

]
µ′

i[dθi]

≤
∑

i∈I
µ′

i

[
Θµ′

i

∖
Ωi

(
ε

4|I|
∣∣∣w

)]

≤ |I| × ε

4M|I| ≤ ε

4
%



838 Y.-C. CHEN AND S. XIONG

where the first equality follows from (4); the third equality follows from (10);
the first inequality follows from the fact that vi(θi)[qi(θi% θ−i) − q∗

i (θi% θ−i)] ≤
1 for all (i% θ); the second inequality follows from (7); and the last equality
follows because M ≥ 1.

Combining (11) and (12), we get
∫

Θµ′

[
max
i∈I

vi(θ)−
∑

i∈I
mi(θ)

]
µ′[dθ] ≤ ε)

That is, (q%m) achieves ε-SE on Θµ′ . Q.E.D.

THEOREM 1: F is generic in P . That is, full surplus extraction is generically
possible in the space of priors.

PROOF: Define

Fn ≡
{
µ ∈ P :∃ a first-order mechanism (q%m) on Θµ(13)

that achieves IR, IC, and
1
n

-SE
}
)

Clearly,
⋂∞

n=1 Fn ⊂ F . Hence, it suffices to show that Fncontains an open and
dense set in P .

By Proposition 2, for any µ ∈ F cm, there exist γµ > 0 and a first-order mecha-
nism (q%m) defined on Θ∗ such that, for any µ′ with dP(µ′%µ) < γµ, the mech-
anism (q%m) achieves IR, IC, and 1

n
-SE on Θµ. That is,

BdP (µ%γµ)≡
{
µ′ ∈ P :dP

(
µ′%µ

)
< γµ

}
⊂ Fn% ∀µ ∈ F cm)

It follows that

F cm ⊂
⋃

µ∈F cm

BdP (µ%γµ)⊂ Fn)

Since F cm is dense in P by Lemmas 6 and 7, it follows that
⋃

µ∈F cm BdP (µ%γµ)
is an open and dense set which is contained in Fn. Q.E.D.

3.4. Genericity in the Space of Models

We now show that our genericity result holds in the space of all models.

THEOREM 2: F ∩ M is generic in M. That is, full surplus extraction is generi-
cally possible in the space of models.

Since M is dense in P by Lemmas 6 and 7, Theorem 2 follows from Theo-
rem 1 and Lemma 3.



GENERICITY OF FULL SURPLUS EXTRACTION 839

The space of models is an important class of priors to which our topological
analysis, but not HN’s geometric and measure-theoretic analysis, is applicable.
The genericity notion employed by HN requires that the ambient space of pri-
ors be convex. Since the space of all priors is indeed convex, in this space our
topological genericity results stand in contrast to HN’s nongenericity results.
However, the space of models is not convex. For example, consider µa, which
is a convex combination of the two models µ′ and µ′′ described below:

µ′ :

θ′
2 θ̃′

2

θ′
1

1
4

1
4

θ̃′
1

1
4

1
4

µ′′ :

θ′′
2 θ̃′′

2

θ′′
1

1
6

1
3

θ̃′′
1

1
3

1
6

µa :

θ′
2 θ̃′

2 θ′′
2 θ̃′′

2

θ′
1 a× 1

4 a× 1
4 0 0

θ̃′
1 a× 1

4 a× 1
4 0 0

θ′′
1 0 0 (1 − a)× 1

6 (1 − a)× 1
3

θ̃′′
1 0 0 (1 − a)× 1

3 (1 − a)× 1
6

)

Observe that µa is not a model because µ′ and µ′′ have distinct supports.
In general, every prior can be regarded as a convex combination of models.16

HN interpreted the convex combination as uncertainty faced by the mechanism
designer. However, the designer could conceivably resolve this uncertainty by
reducing a mechanism design problem associated with a prior to a mechanism
design problem associated with models, as follows. First, for each type θi, there
is a belief subspace Θ which is the minimal belief subspace among those con-
taining θi (see Mertens, Sorin, and Zamir (1994, item 2(e), p. 144)), that is,
θi ∈Θi and there is no belief subspace Θ′ !Θ such that θi ∈Θ′

i.
Second, in Chen and Xiong (2013), we proved that a prior µ is a model iff

for µ-almost all θ, Θµ is the minimal belief subspace containing θi for all i ∈ I.
Hence, the designer can ask the agents to simultaneously report the minimal
belief subspaces containing their actual types. If their reports do not match, the
designer levies a large fine. Since for µ-almost all θ, the support of µ is the min-
imal belief subspace containing θi for all i, truth-reporting is an equilibrium.17

Finally, since every prior is a convex combination of models, the designer can
be sure that the reported belief subspace is the support of some model. For

16Since each extreme point of the convex space of priors is a model, this claim follows from
Choquet’s theorem (see Barelli (2009, Section 4)). Using this observation, Barelli (2009) also
argued that HN’s analysis is not comparable to CM’s analysis, since the latter does not rely on
this convex combination.

17See also Chung and Ely (2007, p. 448) for a similar argument.
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such a designer, the genericity issue is “how often” the resulting model permits
FSE. Since the notions of genericity that HN adopted require convexity, and
since we know of no other notions of genericity that do not require convexity,
we can only apply the topological notion of genericity to the space of models.

4. DISCUSSION

4.1. General Mechanism Design Problems

Here we discuss how our results can be used to address surplus extraction
in the general mechanism design problems formulated in McAfee and Reny
(1992). Let (X% (ui)i∈I) be a general environment where X is the space of
outcomes and ui :X × V × R → R is a quasilinear ex post utility of agent i.
Consider an arbitrary IC mechanism (q′%m′) defined on Θ∗ that gives agent i
an interim expected equilibrium payoff of Ui(θi|q′%m′) (which we denote by
U ′

i (θi) for simplicity) when his type is θi ∈ Θ∗
i . Following McAfee and Reny

(1992), we assume that U ′
i is continuous.

For any continuous side-payment scheme (wi)i∈I on Θ∗, define

U ′
i (θi|w)≡ U ′

i (θi)−
∫

wi

(
v−i(θ−i)

)
bi(θi)[dθ−i])

We consider the mechanism supplemented with the side-payment scheme
(wi)i∈Ito be a CM′ mechanism, which we also denote by w. For example, in
our auction setting, the initial mechanism is the second-price auction and the
resulting CM′ mechanism is a CM mechanism, that is, U ′

i (θi) = Ui(θi|q∗%m∗)
and U ′

i (θi|w) =Ui(θi|w). Furthermore, every CM′ mechanism is IC.
In this setup, we first define the notion of FSE′ priors as follows:
• µ is an FSE′ prior if, for any ε > 0, there is a CM′ mechanism w on Θµ

such that µ[{θ :U ′
i (θi|w) ∈ (0% ε)%∀i}]> 1 − ε.

Note that IR holds only with probability arbitrarily close to 1 for an FSE′ prior.
In the following, we first explain that all of our results remain unchanged un-
der these definitions, and then comment on the issue of IR for FSE′ priors.
The first step does not require any restriction on the mechanism design envi-
ronment studied in McAfee and Reny (1992), while the second step does.

First, after replacing Ui(θi|w) with U ′
i (θi|w) and CM mechanisms with CM′

mechanisms everywhere in Section 3.2, we proceed as follows. The continu-
ity of U ′

i and wi implies that U ′
i (θi|w) is continuous and hence the thesis of

Lemma 8. Proposition 1 then follows from Lemma 8. Now define

F ′
n ≡

{
µ ∈ P :∃ a CM′ mechanism w on Θ∗ s.t.

µ
[{
θ :U ′

i (θi|w) ∈ (0%1/n)%∀i ∈ I
}]

> 1 − 1
n

}
)
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We can then prove that FSE′ priors are generic in the space of all priors by
replacing Fn with F ′

n, and Proposition 2 with Proposition 1, in the proof of
Theorem 1.

Second, we comment on the issue of IR for FSE′ priors. For an FSE′ prior µ,
even if U ′

i (θi|w) ∈ (0% ε) with probability 1 − ε under w, U ′
i (θi|w) may still be

negative with positive probability. We can address this issue by using the idea
in Lemma 9. However, we will need some additional restrictions on the mech-
anism design environment and some careful modification of the definition of
FSE, as shown here:

• The environment (X% (ui)i∈I) satisfies excludability if (i) X = ∏
i∈I Xi;

(ii) ui does not depend on X−i (i.e., ui :Xi × V × R → R); (iii) for each i ∈ I,
there is some x0

i ∈ Xi such that ui(x0
i %v%0)= 0 for any v ∈ V .

• µ is an FSE prior with respect to (q′%m′) if, for any ε> 0, there is an IR
and IC mechanism (q%m) on Θµ such that (1) µ[{θ :Ui(θi|q%m) ∈ (0% ε)%∀i}] ≥
1 − ε; and (2) µ[{θ :qi(θ) = q′

i(θ)%∀i}] ≥ 1 − ε.
In other words, excludability says that it is possible to “exclude” an agent by

assigning him an allocation that generates utility zero (i.e., his reservation util-
ity) regardless of the actual value profile v. Given excludability, we can follow
the proof of Lemma 9 and replace qi(θ) = 0 with the allocation x0

i whenever
IR for θi is violated. We can similarly show that the modified mechanism sat-
isfies IC. As a result, for any FSE′ prior µ and any ε> 0, since IR is violated
with only µ-probability ε, we can find an IR and IC mechanism (q%m) such
that (1) and (2) in the above definition of FSE priors hold. That is, given ex-
cludability, every FSE′ prior is an FSE prior. Therefore, the genericity of FSE
priors follows from the genericity of FSE′ priors.

Finally, excludability clearly holds in any private goods allocation environ-
ment (e.g., auction, trade, or bargaining) and other environments such as reg-
ulation or income taxation, but it rules out some prominent environments such
as public goods provision.18

4.2. Implementability

We say that a mechanism is value-measurable if the allocations and the pay-
ments depend only on the reported values. By Duggan (1997, Proposition 4
and Theorem 2), every value-measurable mechanism that achieves IC is virtu-
ally Bayesian implementable. In Chen and Xiong (2013), we generalized this
result to first-order mechanisms.19 That is, for any ε > 0 and any mechanism

18We also note that the IR constraint is not always relevant. For example, Fudenberg and Tirole
(1991, p. 245) noted that “in some public good problems, the government may impose decisions
that the agents cannot veto” and “whether an individual rationality constraint should be included
in the model depends on the extent of the coercive power of the principal, or equivalently, on the
distribution of property rights.”

19Brusco (1998) constructed an example in which FSE is possible and yet no mechanism can
yield FSE as the unique Bayesian Nash equilibrium outcome. That is, FSE need not be Bayesian
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(q%m) that we employ to achieve FSE for a prior µ, there exists a mechanism
that maps each θ to a random outcome such that, in any Bayesian Nash equilib-
rium of the mechanism, the outcome (q(θ)%m(θ)) is obtained with probability
1 − ε for µ-almost all θ.

4.3. Finer Topologies

We prove our topological genericity results under the weak∗ topology, which
is often regarded as a coarse topology. A natural question is whether the re-
sults still hold if we endow the space of priors with a finer topology. Recall that
our genericity notion is defined using a residual set which is a countable inter-
section of open and dense sets. Since a finer topology has more open sets, the
openness in our genericity results (i.e., Propositions 1 and 2) continues to hold
in any finer topologies.

For denseness, consider Theorem 1, for example. Recall that Proposition 2
holds for any µ ∈ F cm. Hence, as long as F cm is dense, Fn, defined as in (13),
still contains an open and dense set. As a result, Theorem 1 still holds with
the same proof. Using this idea, we proved in Chen and Xiong (2013) that our
genericity results remain true under the weak∗ topology combined with the
convergence of supports in the Hausdorff topology.20

However, we also showed in Chen and Xiong (2013) that F is nongeneric
in P under the topology induced by the total variation norm. Furthermore,
we proved that the total-variation-norm topology is equivalent to the discrete
topology in the space of finite models. Hence, FSE is neither generic nor non-
generic in the space of finite models under the total-variation-norm topology.
This suggests that the total-variation-norm topology is too fine for our purpose.
In particular, under the total-variation-norm topology, even CM’s genericity
result no longer holds.21

4.4. Priors on the Universal Type Space

Throughout the paper, we have restricted our attention to priors on the uni-
versal type space Θ∗. Below, we provide a sense in which this is without loss of
generality.

fully implementable even when it is possible. In contrast, our result shows that whenever FSE
is achieved in a BIC first-order mechanism (which we show is possible for generic priors), it is
virtually Bayesian fully implementable.

20Convergence of priors in the weak∗ topology need not imply convergence of their supports
in the Hausdorff topology. See Aliprantis and Border (2006, pp. 562–563).

21CM fixed the number of types for each player and the values associated with the types. In
this case, since the space of priors is a finite-dimensional simplex, a natural topology on the space
of priors is the Euclidean metric topology, which coincides with the weak∗ topology. However,
this topology is strictly coarser than the total-variation-norm topology. In particular, under the
total-variation-norm topology, a prior that is sufficiently close to a non-FSE prior must also be a
non-FSE prior.
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Let (Θ̂i% v̂i% b̂i)i∈I be a (private-value) abstract type space, where Θ̂i is a com-
pact metric space of bidder i’s types; v̂i : Θ̂i → Vi is a continuous function that
identifies the value of a type θ̂i being v̂i(θ̂i); and b̂i : Θ̂i → ∆(Θ̂−i) is a contin-
uous function that identifies the belief of θ̂i being b̂i(θ̂i). Each belief subspace
in Θ∗ naturally induces an abstract type space, and conversely, an abstract type
space can be embedded into the universal type space as a belief subspace in a
manner that preserves all the values and beliefs. Formally, let η ≡ (ηi)i∈N be
the canonical embedding from any Θ̂i to Θ∗

i . Mertens and Zamir (1985) and
Heifetz and Neeman (2006) showed that, for each θ̂i ∈ Θ̂i, and for any Borel
subset E−i of Θ∗

−i, we have

vi
(
ηi(θ̂i)

)
= v̂i(θ̂i);(14)

bi

(
ηi(θ̂i)

)
[E−i] = b̂i(θ̂i)

[
η−1

−i (E−i)
]
)(15)

Generally, the existence of a mechanism that achieves FSE on Θ̂ does not
imply the existence of a mechanism that achieves FSE on the belief subspace
η(Θ̂) ⊂ Θ∗. However, for practical reasons, a mechanism designer may be
obliged to use simple mechanisms. Assume that first-order mechanisms are the
only feasible mechanisms. For example, most auctions are first-order mecha-
nisms. Under a first-order mechanism, the incentive of a type is fully character-
ized by his second-order belief. Consequently, the equilibrium outcome of an
abstract type space Θ̂ is fully preserved on η(Θ̂). This intuition is formalized
in the following proposition.

PROPOSITION 3: For any abstract type space (Θ̂i% v̂i% b̂i)i∈I , there is a first-order
mechanism that achieves FSE on Θ̂ if and only if there is a first-order mechanism
that achieves FSE on η(Θ̂)⊂Θ∗.

That is, in regard to achieving FSE by first-order mechanisms, any abstract
type space Θ̂ can be fully represented by its counterpart η(Θ̂) in the universal
type space. In this sense, we can focus on priors on the universal type space
without loss of generality. The proof of Proposition 3 is straightforward and is
therefore omitted.

5. CONCLUSION

In this paper, we provide a sense in which full surplus extraction is generi-
cally possible even if we relax CM’s common-knowledge assumption of a fixed
finite number of types. In other words, private information generically confers
no rent on its possessor, whether or not we relax this assumption on the infor-
mation structures generated by common priors.

As explained in the Introduction, the genericity of FSE is an important crite-
rion for evaluating the validity of the classical mechanism design model. Thus,
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we may have to treat the classical model and its associated theories with cau-
tion if we fail to identify inessential assumptions of the classical model which
explain the genericity of FSE.

The gist of our analysis is that CM mechanisms are robust to small misspeci-
fications of priors. This advantage makes it even more puzzling that CM mech-
anisms are rarely seen in reality. Indeed, as McAfee and Reny (1992, p. 419)
have argued: “This indicates (at least to us) that the prevalence of the English
auction in selling items whose value is uncertain is almost certainly not due
to the fact that sellers are maximizing expected revenue.” Our results call for
further scrutiny of this puzzle.

APPENDIX: PROOFS OF LEMMAS 2, 3, AND 9
PROOF OF LEMMA 2: First, P is a compact metric space (see Mertens, Sorin,

and Zamir (1994, p. 147, item 2)) and thus a complete metric space. This im-
plies that P is a Baire space (see Willard (1970, Corollary 25.4)). To see that
M is a Baire space, note first that the set of extreme points, denoted by M′,22

in the convex compact metric space P is a Gδ set (see Phelps (2001, Proposi-
tion 1.3)) and thus is also a Baire space (see Willard (1970, Theorem 25.3)).
Clearly, F ∗ ⊂ M′, and thus it follows from Lemmas 6 and 7 that M′ is dense
in M. Since M contains M′ as a dense subset, it follows that M is also a Baire
space (see Engelking (1989, p. 201, Exercise 3.9.J.(b))). Q.E.D.

PROOF OF LEMMA 3: By the genericity of U , we have U ⊃ ⋂∞
n=1 En, where

En ⊂X is open and dense in X for every n. Hence,

U ∩Y ⊃
∞⋂

n=1

(En ∩Y))(16)

First, En ∩ Y is open in Y under the relative topology, because En is open
in X . Second, En ∩Y is dense in Y under the relative topology. To see this, for
any y ∈ Y and any open set Gy ⊂ Y such that y ∈ Gy , it suffices to show that
there exists some yn ∈ [En ∩Y ] ∩Gy . Since Gy is open in Y under the relative
topology, we have Gy =G∩Y , where G (⊂X) is open in X . Since En is open
and dense in X , we have En ∩G += ∅ and En ∩G is open in X . Since Y is dense
in X , we have [En ∩G] ∩Y += ∅. Thus, there exists yn ∈ [En ∩G] ∩Y . Finally,

[En ∩G] ∩Y = [En ∩Y ] ∩[G∩Y ] = [En ∩Y ] ∩Gy )

Therefore, there exists some yn ∈ [En ∩ Y ] ∩ Gy , and En ∩ Y is dense in Y
under the relative topology. It then follows from (16) that U ∩ Y is generic
in Y . Q.E.D.

22 M′ ≡ {µ ∈ P : there exist no priors π%v% and α ∈ (0%1) such that π += v and µ = απ + (1 −
α)v}.
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PROOF OF LEMMA 9: The value of Ui(θi|w) depends only on the first-order
belief of θi. Hence, (q%m) is a first-order mechanism.

For any θi and θ′
i in Θ∗

i , we have

Ui

(
θ′
i|θi%q%m

)
=

{
Ui

(
θ′
i|θi%w

)
% if Ui

(
θ′
i|w

)
> 0;

0% if Ui

(
θ′
i|w

)
≤ 0)

(17)

As a result, for every θi ∈Θ∗
i , we have

Ui(θi|q%m)= max
{
Ui(θi|w)%0

}
≥ 0)(18)

That is, IR holds. We now check IC. For any θi ∈ Θ∗
i , we show that

Ui(θi|q%m) ≥ Ui(θ′
i|θi%q%m) for any θ′

i ∈ Θ∗
i . Since w satisfies IC on Θ∗, then

for any possible deviation θ′
i ∈Θ∗

i , we have

Ui(θi|w)≥ Ui

(
θ′
i|θi%w

)
)(19)

There are two cases to check.
Case 1: Ui(θ′

i|w) > 0. Then,

Ui(θi|q%m)≥ Ui(θi|w)≥ Ui

(
θ′
i|θi%w

)
= Ui

(
θ′
i|θi%q%m

)
%

where the first inequality follows from (18); the second inequality follows from
(19); and the equality follows from (17) and Ui(θ′

i|w) > 0.
Case 2: Ui(θ′

i|w)≤ 0. Then,

Ui(θi|q%m)≥ 0 = Ui

(
θ′
i|θi%q%m

)
%

where the inequality follows from (18) and the equality follows from (17) and
Ui(θ′

i|w) ≤ 0. Therefore, it is not profitable for type θi to deviate by reporting
θ′
i under (q%m). Hence, IC is satisfied. Q.E.D.
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