CONTINUOUS IMPLEMENTATION WITH DIRECT REVELATION
MECHANISMS

YI-CHUN CHEN#, MANUEL MUELLER-FRANK®, AND MALLESH M. PAI¢

ABSTRACT: We investigate how a principal’s knowledge of agents” higher-order
beliefs impacts their ability to robustly implement a given social choice function.
We adapt a formulation of Oury and Tercieux (2012): a social choice function is
continuously implementable if it is partially implementable for types in an initial
model and “nearby” types. We characterize when a social choice function is truth-
fully continuously implementable, i.e., using game forms corresponding to direct
revelation mechanisms for the initial model. Our characterization hinges on how
our formalization of the notion of nearby preserves agents” higher order beliefs. If
nearby types have similar higher order beliefs, truthful continuous implementation
is roughly equivalent to requiring that the social choice function is implementable
in strict equilibrium in the initial model, a very permissive solution concept. If they
do not, then our notion is equivalent to requiring that the social choice function is
implementable in unique rationalizable strategies in the initial model. Truthful con-
tinuous implementation is thus very demanding without non-trivial knowledge of
agents’ higher order beliefs.
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CHEN, MUELLER-FRANK, AND PAI
1. INTRODUCTION

The literature on Robust Mechanism Design, starting with the seminal work of Berge-
mann and Morris (2005) studies settings where the designer does not perfectly under-
stand the information structure among agents. It investigates the design of mechanisms
that perform robustly well across various information structures among agents that the
principal considers possible. In this paper, our aim is to isolate how a desire for robustness
impacts a principal who is solely unsure about agents” higher-order beliefs, i.e. beliefs of
agents about each other’s beliefs etc. Distinguished contributions in the game theory lit-
erature inform us that predictions in a given strategic situation can be very sensitive to
agents” higher-order beliefs (e.g. Rubinstein (1989) or Weinstein and Yildiz (2007)). Our
question thus concerns how these higher-order beliefs play a role when the principal can
design the game among the agents.

We start from a standard Bayesian implementation setting: there are finite sets of agents,
states and alternatives, and there is a commonly known information structure that de-
scribes the information of the agents. The planner would like to (partially) implement
a given social choice function, i.e. a function from profiles of types to alternatives. In
this case, any Bayesian incentive compatible social choice function can be partially imple-
mented with a direct revelation mechanism. But what if the principal is unsure about the
exact information structure among agents, but would nevertheless like the social choice
function to be partially implemented “close to” a reference information structure? For-
mally, we adapt the formulation of Oury and Tercieux (2012) and revisit the question of
when a social choice function is continuously implementable.'

Our main results characterize when a social choice function is truthfully continuously
implementable, i.e., using game forms corresponding to direct revelation mechanisms for
the initial model. One way to interpret our restriction is that it formalizes conditions un-
der which a principal who believes a baseline information structure and therefore uses a
direct revelation mechanism is nevertheless able to implement his desired social choice
function when he is “slightly” wrong. Under this interpretation, our notion of truthful
continuous implementation is a robustness check to the standard revelation principle—
we build on this interpretation by presenting results on the set of continuously imple-
mentable social choice functions. An alternate interpretation is that by limiting the mes-
sage space, we rule out “detail-free” mechanisms that simply elicit these details from the
1Our paper substantially builds off their work, we defer a fuller discussion of the details of their work, the

closely related characterization of Oury (2015), and other related papers to Section 6, after we have formally
stated our own results.
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agents and then proceed akin to standard mechanism design. Such mechanisms, it may
be argued, obey the letter but not the spirit of a robustness exercise.”

Intuitively, the characterization depends on the underlying topology with respect to
which we demand continuity. We study two well understood topologies in this setting.
The first, the product topology, only preserves lower order beliefs. It is the topology stud-
ied in Oury and Tercieux (2012) (also, the topology implicitly used in Rubinstein (1989)
and explicitly appealed to in Weinstein and Yildiz (2007)). The second is the uniform-
weak topology of Chen, Di Tillio, Faingold, and Xiong (2010), which preserves higher-
order beliefs. The latter is studied for two reasons. Firstly, we would argue, this is of
independent interest: being a finer topology, continuity with respect to this topology cap-
tures a weaker notion of robustness. Conceptually, one can argue that these capture two
disparate ways an information structure can be close to a given information structure: the
latter involves agreement at all arbitrarily higher-order beliefs, while the former topology
only constrains lower-order beliefs. Second, at a more technical level, our results in the
latter are a building block for our results in the former—we detail this further below in
Section 1.1. In Section 5, we develop an example of a standard government natural re-
source auction setting to motivate these topologies.

At a high level, our findings can be summarized thus: settings like the latter, where
despite not knowing the exact information structure, the principal has information about
the agents” higher-order beliefs, are not much more constraining than the baseline of exact
knowledge of the information structure. By contrast, if the agents’” higher-order beliefs
may be arbitrary, then the principal is severely restricted.

Further, we show that a “revelation principle” applies for the latter notion. In that set-
ting, if a social choice function can be continuously implemented, it can be truthfully con-
tinuously implemented by a direct revelation mechanism. A revelation principle does not
obtain in the more general setting. Requiring this stronger notion, therefore, may necessi-
tate the use of more complex mechanisms to continuously implement some social choice
functions (in particular, mechanisms containing messages that are not sent by any type
in equilibrium in the baseline information structure considered by the principal). Fur-
ther, we provide a partial characterization of continuous implementation in this setting,
and thus explain the gap between continuous implementation and truthful continuous
implementation.
20f course, a principal may opt for a different “simple” mechanism rather than a direct revelation mech-
anism. To that end, note that while our results are formally stated for direct revelation mechanisms, our
proof techniques apply to any mechanism where the equilibrium in the baseline is full-range, i.e. for every

message available to any agent, there is some type of agent in the baseline information structure which
sends that message. We expand on this observation below after presenting our formal results.
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1.1. Model and Results

Let us now describe the setting and our results more formally. There are finite sets of
agents, states and alternatives.” There is given a social choice function of interest. There
is a baseline information structure that the principal considers. The actual information
structure that obtains among agents is unknown to the principal. We wish to understand
when the social choice function can be truthfully continuously implemented: i.e. in any
(epistemic) model that embeds the baseline model, there is an equilibrium of the direct
revelation mechanism such that the baseline types report their types truthfully (resulting
in the desired social choice function), and further the strategy of closeby types converges.
We term this requirement truthful continuous implementation (the additional modifier of
“truthful” to the notion of Oury and Tercieux (2012) reflecting our restriction to the truth-
tul equilibrium of a direct revelation mechanism).

We study continuity with respect to two topologies on types. The first, the product
topology, places no restrictions on agents” higher-order beliefs. We show that under this
topology, truthful continuous implementation is equivalent to requiring that the social
choice function be implementable with a mechanism such that, in the baseline model,
each agent has a unique rationalizable action, and the desired alternative of the social
choice function obtains if each agent plays this unique rationalizable action (Theorem
1). The second, the uniform-weak topology, (see e.g. Monderer and Samet (1989) and
Chen, Di Tillio, Faingold, and Xiong (2010)) is roughly a topology that preserves higher-
order beliefs. We show that under this topology, a social choice function is truthfully
continuously implementable if and only if it can be implemented in Strict equilibrium in
the baseline model ( Theorem 2).

Finally, we shed some light on the gap between continuous implementation and truth-
ful continuous implementation. We show that a social choice function is continuously
implementable with respect to the uniform-weak topology if and only if it is truthfully
continuously implementable with respect to the uniform-weak topology (Theorem 3).
Therefore a revelation principle holds for continuous implementation with respect to the
uniform-weak topology. However, we show that one does not get a revelation princi-
ple with respect to the product topology. * In particular, our methods show something
stronger— if a social choice function is not truthfully continuously implementable, but is
continuously implementable, then the implementing mechanism must necessarily have
messages that are not being sent at the baseline.

3Throughout, we assume a richness condition on the environment: see Section 2.3 for details.

*We can give a partial characterization of continuous implementation with respect to the product topol-
ogy: we show that any continuously implementable social choice function must be strictly rationalizable
implementable. The converse need not be true.
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At a technical level, we would like to highlight our characterization results in the prod-
uct topology. To get some intuition for this result, recall the work of Weinstein and Yildiz
(2007). They consider a given game of incomplete information. They assume a form of
richness: for each player, and each action of that player, there exists a “crazy type” whose
preferences make that action strictly dominant. Their main result is to show that for any
action a that is rationalizable for a (normal) type in the game, there exist close-by types in
the product topology for whom that action is the unique rationalizable action. The pos-
sibility of aforementioned crazy types is used to start a contagion process, with the strict
dominance used to break ties. In an implementation setting, this assumption of crazy
types is not well grounded, since the game form is chosen by the planner and therefore
not fixed a priori. Further, we are after a partial equilibrium result, i.e. there exists one
equilibrium of the game with the desired properties.”

Instead our result in the product topology builds off of our result in the uniform-weak
topology. Closeness in the uniform-weak topology implies closeness in the product topol-
ogy. By our results in the former, we know that the social choice function must be imple-
mentable in Strict Bayes-Nash Equilibrium. Recall further that we are considering imple-
mentation with DRMs, i.e. for every message an agent could send there is a correspond-
ing type: in other words, the equilibrium has full range. Strict equilibrium implies that
for that type it is a strict best response for him to send the corresponding message. We
use these types as a substitute for the crazy types described above—these are sufficient
since we are indeed arguing the existence (or lack thereof) of a single equilibrium.

Take any rationalizable strategy s; for a player i. We construct a sequence of types that
converge to the baseline type in the product topology for which this strategy is the unique
best response, in a manner similar to Weinstein and Yildiz (2007) (and also Weinstein and
Yildiz (2004): see discussion after the proof of the theorem). Roughly, put most of the
mass of i’s beliefs on the fact the others will play the strategies that rationalize s;, and a
small probability of the type corresponding to the strategy s;. The latter makes this a strict
best response. Therefore, at any Bayes-Nash Equilibrium of the incomplete information
game in this model, these constructed types must be playing the rationalizable strategy
s;. From the fact that the social choice function is continuously implementable, therefore,
we have rationalizable implementation as desired.

The paper is organized as follows. Section 2 defines the model. Section 3 characterizes
truthful continuous implementation. Section 4 studies the original continuous implemen-
tation of Oury and Tercieux (2012) in this setting and the gap between the two. Section
5 develops an application in the context of natural resource auctions and explains the
implications of our results. Section 6 discusses the related literature and connections.
Wsense, there is a tighter connection between our results and those of Weinstein and Yildiz (2004), we

discuss the details after we introduce our formal results. See also Weinstein and Yildiz (2011).
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2. MODEL

There is a state of the world 6 € ®, unknown to the planner. There is a set of alternatives
A. Unless otherwise stated, both A and © are finite. There is a finite set of I agents. Agent
i has a utility function u; : A x ® — R. Sometimes, we might refer directly to the implied
ordinal preferences over alternatives, with the standard notations ;¢ for the strict part
of the preference of agent i at state 8, ~; y for indifferences, and =; y for weak preference.

2.1. Epistemic Preliminaries

A model T is a pair (T,x) where T = T; x T, x - -+ x T is a countable type space and
kt, € A (© x T_;) denotes the associated beliefs for each t; € T;.

Given a type t; in a model (T, ), we can compute the first-order belief of ¢; (i.e., his
belief about ®) by setting ¢! equal to the marginal distribution of x, on ®. We can also
compute the second-order belief of #; (i.e., his belief about (6, 1)) by setting

BE] =, [{(0,t): (0.6],¢1) € E}|,VEC @ x (a(0))".

We can compute the entire hierarchy of beliefs (t},?,...,t,...) iteratively.

Now, write X° = © and for each k > 1: Xf = (A (Xk_l)}l x Xk=1 Observe that
tk € A (X*1) for every k > 1. Let d° be the discrete metric on ® and d' be the Pro-
horov distance on 1st-order beliefs (A (@)).6 Then, recursively, for any k > 2, endow
A (X¥=1) with the Prohorov distance d* where X*~! is endowed with the sup-metric in-
duced by d, d',...., d*=1. Mertens and Zamir (1985) construct the universal type space
Tr C x2 A (X). The universal type space has the property that t; = (t},12,...) € T if
there exists some type t; in some model such that t; and ¢} have the same n-th-order belief
for every n. Endowed with the product topology, T;* is a compact metrizable space and
admits a homeomorphism «: T — A(® x T*)).

We say that a sequence of types {t;,}_, converges uniform-weakly to a type t; if:

A"V (t; ;) = supdf (tif’n,tf) — 0.
k>1
®For a metric space (X, p), the Prohorov distance between any two u, i’ € A (X) is
inf{~y > 0: p/'(E) < u(E") + + for every Borel set A C X},
where E" = {x € X : yirelgp(x,y) <7}
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Moreover, write "V (t,,t) — 0if di™ (t;,,t;) — 0 for each i.” Similarly, a sequence of
types {t;,} ., converges in the product topology to a type ; if

af (tin i) = Y 278 (85, 1) 0.
k=1

Again, write dP (t,,t) — 0if d¥ (t;,,,¢;) — 0 for each i.

Following Oury and Tercieux (2012), for two models 7 = (T,«) and 7' = (T',«’),
we will write 7 O 7" if T D T', and for t; € T} : x4[E] = x.[(® x T” ;) N E] for any
measurable E C © x T_;.

The principal considers a baseline model which we denote by 7 = (T,%). We assume
that the baseline model is finite, i.e.,

T| < oo. For instance, this includes as a special
case the standard mechanism design setting with a common prior over payoff-relevant
types. More precisely, we may set © = x;c/0;, T; = ©;, and each «;, is induced from a
common prior € A (@) such that marge y [0;] > 0 for each 0;, i.e., &y, [(6;,0_;,t_;)] =
Ligi=t,0_=t_;y 1 (6-i[6:).

2.2. Mechanisms and Notion of Implementation

A social choice function (SCF) is a mapping f : To — A where Tp C T. In gen-
eral Tp = T, but in some examples we may have strict containment. Assume also that
{t;} xsuppxs, C Ty for every t; € T; (the reason for this support condition is so that social
choice function is well-defined for every profile that every type considers possible).

A mechanism, denoted M = (M, g) is a message space M; for each player i, with M =
['I; M;, and an outcome function g : M — A. A countable (respectively, finite) mechanism
is one where the message space M is countable (respectively, finite) in cardinality. Given a
mechanism M and a model 7, we write U(M, T) for the induced incomplete information
game. A Bayes-Nash Equilibrium (BNE) is a strategy profile (c;);.; with o; : T; — A (M;)
such that for t; € T;, each message m; € supp 0; (t;) maximizes the expected payoff of
agent i with respect to the opponents’ strategy profile o_;.

A direct revelation mechanism is defined as is standard, i.e. the message space of every
player equals the set of types the principal considers possible in the baseline model, and
the outcome function is denoted ¢ : [[; T; — A. We can now define truthful continuous
implementation in this setting:

DEFINITION 1. We say f is truthfully continuously implementable w.r.t. metric d if the
direct revelation mechanism is such that for any model T D T, there is a (possibly mixed) BNE ¢
in the game U (M, T) such that for every t € Ty:

a. g(t) = f(t), and,

7See Chen, Di Tillio, Faingold, and Xiong (2010) for further details about this topology.
7
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b. for any sequence {t,} C T withd (t,,t) — 0,0 (t,) — o¢. .

Definition 1 is directly comparable to the definition of continuous implementation of
Oury and Tercieux (2012) (Definition 2 in their paper)—see Definition 2 below for their
definition in our notation. Note that truthful continuous implementation is more de-
manding than continuous implementation in two ways. Firstly, it fixes the form of the
mechanism used: the former restricts attention to direct revelation mechanisms where
the latter considers general mechanisms. Secondly, it demands robustness of a specific
equilibrium of this mechanism (i.e., the truth-telling equilibrium), whereas the latter fo-

cuses on outcomes.8

DEFINITION 2. Given any SCF f, mechanism M = (M, g), and model T = (T,«) with
T O T, say that a mixed-strategy Bayes-Nash Equilibrium (BNE) o continuously implements
(resp. strictly continuously implements) f in U (M, T ) w.r.t. a metric d if

a. ol is a pure-strategy Bayes-Nash Equilibrium (resp. strict Bayes-Nash equilibrium) in
u(Mm,T);
b. Forany t € Ty, g (0 (ty)) — f(t) for any sequence of type profiles {t,} C T with
d(ty,t) — 0.
We say that f is continuously implementable (resp. strictly continuously implementable)
w.r.t. metric d if there is a mechanism M = (M, g) such that for any model T D T, there is
an equilibrium which continuously implements (resp. strictly continuously implements) f in

uwm,T).
2.3. Reduced Normal Forms and a Richness Assumption

A recurring issue in our setting is breaking indifferences, since we have no transfers.
To get results within a classical implementation setting we therefore need a richness as-
sumption.” In order to introduce our assumption, first consider the following standard
definition of strategic equivalence adapted to our setting.

DEFINITION 3. For a DRM g, we say t; is strategically equivalent to t; for an agent i if agent
i is indifferent between the two reports regardless of the state and others’ reports, i.e.:

Vt_;,0:g(ti,ti) ~ip g(ti t_;).

8WWe discuss this further in Section 6.

%0ur assumption serves the same technical role as the assumption of costly messages in Oury and Tercieux
(2012) and local payoff uncertainty in Oury (2015). We discuss those assumptions when we compare to the
related literature in Section 6. At a high-level though, the difference is conceptual—our assumption is one
that can be verified in the context of the baseline model considered by the principal. Their assumptions are
richness assumptions on the elaborations of their model with respect to which continous implementation
is desired.
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In light of this we can define the reduced normal-form of a DRM, again, in line with
standard terminology.

DEFINITION 4. A reduced normal-form of a DRM g, denoted §, is a mechanism in which all
the strategically equivalent messages are identified. For each t;, let F; denote the message in §
corresponding to the set of messages strategically equivalent to t; in g.

It is possible in the original mechanism g that two messages are strategically equivalent
for some agent i but deliver different outcomes at some profile of messages from other
agents, i.e. the mechanism ¢ is not well defined. The following assumption rules this out.

ASSUMPTION 1. We say that a DRM g admits a reduced normal-form if § is well defined, i.e.,
for an agent i and any two messages t; and t] which are strategically equivalent, g(t;,-) = g(t,-).

This is reminiscent of the non-bossiness assumption of Satterthwaite and Sonnenschein
(1981), which is often invoked in social choice/ allocation settings. Roughly, it requires
that if an agent changing his report (all else equal) changes the selected alternative, then
the agent cannot be indifferent between the two alternatives. However, non-bossiness is
standardly defined only for private-value settings, so we do not expound further.

This assumption is novel and therefore perhaps not well understood. Observe that the
following simple richness assumption implies that Assumption 1 is always satisfied: in
particular this assumption is purely on the environment rather than Assumption 1 which
is on the environment and the desired social choice function f.

ASSUMPTION 2. For every agent i and any two alternatives a,a’ € A, there is some 6 such that
agent i is not indifferent between a and a’ under 6.

This latter assumption may not be appropriate for some settings of interest. For ex-
ample, in a private-good allocation setting, agents may be always indifferent between
alternatives that only differ in the allocations of other agents. Even here, however, the
desired social choice function f may be such that Assumption 1 is satisfied, even though
the environment does not satisfy Assumption 2.

To see this consider the following private-good, private-value allocation setting. There
are three agents 1,2,3, and three alternatives 1,2, 3, with each alternative to be thought
of as the corresponding agent getting the good. Each agent i has a type t; € [0,1] which
is their value for receiving the good, and an outside option of 0 for not receiving the
good, with 6 = (t1,1,t3), ® = [0,1] x [0,1] x [0,1]. Observe first that in this setting,
Assumption 2 is not satisfied—e.g. agent 1 is always indifferent between alternatives 2
and 3. However, note that the social choice function which assigns the good efficiently,
f(t1,t2,t3) = argmax;(ty, ta, t3) is such that any DRM g that implements it must satisfy

9
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Assumption 1—an agent’s report will sometimes affect her own allocation. In fact, in this
example, there are no strategically equivalent messages.

In what follows, we invoke the weaker Assumption 1. The reader may mentally sub-
stitute the stronger Assumption 2 if they prefer. Either way, we emphasize that either of
these assumptions are directly verifiable on the primitives of the model.

3. CHARACTERIZING TRUTHFUL CONTINUOUS IMPLEMENTATION

Our main result in this section is a characterization of the set of truthfully continuously
implementable social choice functions in the product topology. The following definition
of interim correlated rationalizable messages (c.f. Dekel, Fudenberg, and Morris (2007))
will be useful:

DEFINITION 5. Let R$° (t;, M) denote the set of interim correlated rationalizable messages of
type t; in M defined as follows:
Let RY (t;, M) = M;. Inductively, for each k > 1, a message m; € R (t;, M) iff there is some
ueA(OxT_;x M._;)such that
R1: m; € argmax,, f®xM_i u; (ml,m_;,0) marg pexm_. [d0, m_;;
R2: marg oxr1 ; pt = kt;;
R3: i ({0t m ) im € R (b, M)}) =1,
Then, R® (t;, M) = N R¥ (t;,, M).

We can now define implementation in unique rationalizable action profile:

DEFINITION 6. Let g be a DRM that admits a reduced normal-form. We say f is implementable
in the unique rationalizable action profile in the reduced normal-form § if for every t € T,

R (t,8) = {1}.
Note that this definition is slightly stronger than rationalizable implementation: the lat-
ter only requires that every rationalizable action profile results in the desired alternative,

while in addition, we require that the implementing mechanism have a unique rational-
izable strategy for each type.

THEOREM 1. Suppose that Assumption 1 holds. An SCF f is truthfully continuously imple-
mentable w.r.t. d¥ by a DRM g if and only if it is implementable in unique rationalizable action
profile in § in the sense of Definition 6.

Since this proof is fairly involved, a high level overview may be useful to help orient the
reader. Sufficiency is fairly straightforward—if § implements f in unique rationalizable
action, then g truthfully continuously implements f—this follows straightforwardly from
the upper hemicontinuity of the rationalizable correspondence.

10
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The nontrivial direction is therefore necessity, i.e. to show that if an SCF f is truthfully
continuously implementable (in the product topology) then f must be implementable in
the unique rationalizable action in the sense of Definition 6.

As a key building block we use our characterization of truthful continuous implemen-
tation in uniform-weak topology below (Theorem 2). Combined with Corollary 1 this
tells us that an SCF f is truthfully continuously implementable w.r.t. the uniform-weak
topology if and only if it is implementable in Strict Bayes-Nash Equilibrium in the “re-
duced normal form.” From this fact, and the fact that the uniform-weak topology is finer
than the product topology, we have that if f is truthfully continuously implementable (in
the product topology) then f is implementable in Strict Bayes-Nash Equilibrium.

Recall further that we are considering implementation with DRMs, i.e. for every mes-
sage an agent could send there is a corresponding type: in other words, the equilibrium
has full range. Strictness implies that for the type corresponding to a particular message
it is a strict best response for him to send the corresponding message. We use this fact
as a substitute for the costly messages of Oury and Tercieux (2012) or the local payoff
uncertainty of Oury (2015).

Take any type t; which is a rationalizable report for a player i of type t; € T;. We can
construct a sequence of types t! that converge to t; in the product topology for which re-
porting #/ is the unique best response, in a manner similar to Weinstein and Yildiz (2007)
(and also Weinstein and Yildiz (2004)). Roughly, put most of the mass of i’s beliefs on the
fact the others will play the strategies that rationalize ¢;, and a small probability that the
typeis t]. The latter makes reporting t/ a strict best response. Therefore, at any Bayes-Nash
Equilibrium of the incomplete information game in this model, these constructed types
must be playing the rationalizable message t;. Since the social choice function is continu-
ously implementable, therefore, we have rationalizable implementation as desired.

3.1. Uniform-Weak Topology

We now introduce our characterization of truthful continuous implementation in the
uniform-weak topology. As we pointed out above, this is useful as a stepping stone to the
characterization in the product topology. Since continuity with respect to the uniform-
weak topology captures a weaker notion of robustness, these results may be of indepen-
dent interest. To state and prove our characterization, we introduce two more terms. We
say that DRM g strictly rewards truth-telling at type t; over type t; for agent i if

Y. (i (g(ti t—i),0) — u; (g(ti, t-:),0)] &, [(6,¢-1)] > 0.
(0,t_)€E@OXT_;

We say that t; always weakly dominates ¢/ for agent i in DRM g if

V(G, t,i) €0 x T,l' U (g(ti/ t,i),G) — U; (g(t:, t,i), 9) > 0.
11
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The following lemma is key to our characterization.

LEMMA 1. If an SCF f is truthfully continuously implementable by a DRM g with respect to
d"®, then, for every agent i and any pair of agent i’s types t; and t., either g strictly rewards
truth-telling at t; over t); or t; always weakly dominates t} in g.

Suppose there exists an agent i and a pair of types t; and t; such that g neither strictly re-
wards truth-telling at ¢;, nor does t; always weakly dominate t/. This in particular means
that there is some state 6’ and some profile of other agents’ reports ¢’ . at which agent i
strictly prefers to report t; over t;. We show that there exists a sequence of perturbations
which converges to ¢; in the uniform-weak topology, such that each type in this sequence
uniquely prefers to report ¢/ in the DRM. Roughly speaking, these are types that put a
small mass on the state that the type is 6’ and the other agents’ types are t’ , but are oth-
erwise identical to ¢;. Thus the conditions described in Lemma 1 are a necessary condition
for truthful continuous implementation in this setting.

Our main characterization of truthful continuous implementation follows:

THEOREM 2. An SCF f is truthfully continuously implementable by a DRM g with respect to
d"““ if and only if for every agent i and any pair t; and t, either g strictly rewards truth-telling at
t; over t); or t; is strategically equivalent to t; for agent i.

The proof of this theorem is easy to describe. The necessity of our condition is straight-
forward in light of Lemma 1. If ¢ does not strictly reward truth-telling at t; over #/, then by
the condition of the Lemma, t; must always weakly dominate #/. But then g cannot strictly
reward truth-telling at t! over f; either. This must imply that ¢ also always weakly domi-
nates t;, which implies that ¢; and ¢/ are strategically equivalent. We show the sufficiency
of our condition constructively.

COROLLARY 1. Suppose that Assumption 1 holds. f is truthfully continuously implementable
in d*? if and only if the reduced normal-form DRM § implements f in truthful strict BNE in
U (M, T), ie. if truthtelling is a strict Bayes-Nash equilibrium in the game U (M, T).

As an aside we should note that similar permissive results would be achieved if we
considered closeness in the strategic topology of Dekel, Fudenberg, and Morris (2006).
This follows from a result of Chen, Di Tillio, Faingold, and Xiong (2010) who show that the
two topologies are equivalent around finite types (recall that by assumption the baseline
model was finite).
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4. A REVELATION PRINCIPLE FOR CONTINUOUS IMPLEMENTATION?

So far, we have only studied truthful continuous implementation. We now recall the
definition of continuous implementation in this setting and consider the relation between
continuous implementation and truthful continuous implementation for both topologies.

We begin with a positive result, i.e. that if requiring continuous implementation with
respect to the uniform-weak topology, we have a revelation principle.

To state and prove our characterization of continuous implementation, we adapt two
definitions to this environment. Fix a mechanism M = (M, g). For agent i’s type t; in T;
and message m’; € M;, we say that f strictly rewards & (t;) over m} in a (pure-strategy) BNE
cinU (./\/l,7_‘) if

Y [wi(g@i(t), o (t))),0) —ui (g (m;, T (t-1))),0)] %y, [(6, )] > 0.

(9,t_i)€® XT_Z‘

We say that t; always weakly dominates m/ in a (pure-strategy) BNE 7 in U (M, T) if
V(0,t) €OxT it u;(g(Ti(t),0-i(t=))) 0) —ui (g (mj,T_i(t-;))),0) = 0.

The following lemma is again the key to our characterization of continuous implemen-
tation. The proof is analogous to the proof of Lemma 1.

LEMMA 2.If Tg = T and f is continuously implementable w.r.t. d"®, then there is a pure-
strategy BNE @ in U (M, T ) such that for each agent i, each type t; in T; and message m’: € M;,
either f strictly rewards o (t;) over m’; or o (t;) always weakly dominates m; in BNE ©..

Lemma 2 immediately implies the following characterization (as well as revelation
principle) for continuous implementation in 4*". Denote by f the reduced normal form
of the DRM f.

THEOREM 3. Suppose that Assumption 1 holds and Tg = T. f is continuously implementable
in d“? if and only if the reduced normal-form DRM f implements f in truthful strict BNE in
U (M, 7).

The basic idea of Theorem 3 is analogous to the proof of Theorem 2. The main difference
is that we need Assumption 1 to ensure that the reduced normal-form is well-defined.
We can then apply similar arguments. Comparing to Theorem 2, we therefore have that,
with respect to the uniform-weak topology, a social choice function is continuously im-
plementable iff it is truthfully continuously implementable.

PROOF. (=) Let M = (g, M) be a mechanism such that BNE ¢ continuously implements
f. Consider the direct revelation mechanism M’ = (¢/, T) defined as ¢'(t) = g(o(t)) for

13
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all t € T. By Lemma 2 and Theorem 2 such a mechanism clearly truthfully continuously
implements f. The implication now follows from Corollary 1.

(<) By Corollary 1, an scf f satisfying this condition is truthfully continuously imple-
mentable and therefore trivially, also continuously implementable. u

4.1. Product Topology

In this section, we first show by counterexample that a revelation principle does not ap-
ply to continuous implementation with respect to the product topology. In particular, we
show an example below in which the direct revelation mechanism does not continuously
implement the desired social choice function (in particular, since it is easily verified that
this fails the characterization of Theorem 1). We then constructively show that there is
a mechanism which contains additional messages and continuously implements the de-
sired social choice function. The example is essentially due to Oury and Tercieux (2012)
(working paper version).

There are 2 agents. Each claims an object, in state 8;, i = 1,2, agent i is the legitimate
owner. The set of outcomes is A = {(x,p1,p2) : x € {0,1,2,3},p1,p2 € {0,8,¢,C}},
If x = 0, the object is not given to either player, x = 1 or 2 connotes that it was given
to the respective player, while x = 3 implies that neither player gets the object and both
are punished. The p;’s correspond to payments from the agents to the principal. Utility
functions are quasilinear and the object has a monetary value to each player. The value
is vy if the player is the true owner, 0 < v; < vy otherwise. Finally, the punishment
outcome x = 3 is equivalent to a fine of f; to the agent if she is the legitimate owner, and
fH > fL > 0 if not.

The baseline type-space of each agent is {61,6,} with the &(-) being the appropriate
common knowledge function.!® The social choice function the principal would like to
continuously implement is f(6;,6;) = (i,0,0), f(6;,6;) = (0,¢,¢) with { > f1.

CLAIM 1. This social choice function is not truthfully continuously implementable wrt d*.

PROOF. A direct revelation mechanism in this setting has exactly two messages for each
player, one corresponding to each type. The claim follows from the characterization of
Theorem 1 since both messages are rationalizable for both types. |

CLAIM 2. There exists an indirect mechanism that continuously implements f with respect to d*.

1ONote that & thus defined results in a “diagonal” typespace that does not fit our model’s requirement
that the typespace be a product space. This is for expositional simplicity. Remark 1 below shows how the
example extends appropriately.

14
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PROOF. Consider an indirect mechanism where each player has 3 possible messages,
(Mine, His, Mine+). The outcome is given by the matrix below with v; < E < vy,

fr<¢<fmgand§ <.

Mine His Mine+
Mine | (0,¢,¢) | (1,0,0) | (2,¢,)

His | (2,0,0) | (0,¢,¢) | (0,¢,0)
Mine+ | (1,Z,8) | (0,0,¢) | (3,0,0)
At 01, action “His” is strictly dominated by “Mine+” for player 1. Consequently, “Mine”

and Mine+ are strictly dominated by “His” for player 2. Finally, in the third round,
“Mine” is strictly better than “Mine+” for Player 1. Analogous reasoning follows for
type 6,. Hence “Mine” is the unique rationalizable action for type 61, and “His” for type
6. Playing this rationalizable action results in the desired social choice function being
implemented.

Therefore, the mechanism described above continuously implements the social choice
function f w.r.t. d” because the interim correlated rationalizable correspondence is upper-
hemicontinous (see proof of sufficiency of Theorem 1). |

REMARK 1. Observe that the example as stated is one where agents’ types are common knowledge
among the agents. This example is easily perturbed to one with a product typespace. To that end
consider a slight perturbation of this model where type 6, believes the other agent is of type 6, with
probability (1 — ¢€), and type 0, with probability €, and 0;’s beliefs are defined analogously. This
will satisfy our requirements for some € > 0 small enough. To see this, observe that both Claims 1
and 2 continue to hold as written. Firstly, each action remains strictly rationalizable in the direct
revelation mechanism (Claim 1). Further, since the set of rationalizable actions is appropriately
upper-hemicontinuous (see e.g. Theorem 2 of Dekel, Fudenberg, and Morris (2006)), Claim 2
follows for € small enough.

4.2. A partial characterization for Indirect Mechanisms

Finally, we provide some results about continuous implementation with respect to the
product topology in indirect mechanisms. We assume that 7 has full support, i.e., for
each t; € T;, we have suppk;, = T_;. Some new definitions are now necessary. We say
that m; is strategically equivalent to m/ for agentiin BNE 7 in U (M, T) if

V(6,t_;) € O T_i: u (g(mj,o_;i(t_;)),0) =u; (g(mj,o_; (t_;)),0).
The following assumption is essentially Assumption 1 adapted to indirect mechanisms.

ASSUMPTION 3. For any agent i and any two messages m; and m; which are strategically equiv-
alent for some BNE 7 in U (M, T ), we have g (m;,-) = g (m}, ).
15
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THEOREM 4. Suppose that Assumption 3 holds for mechanism M. Then, f is continuously
implementable in dP if and only if it is strictly continuously implementable in dP.

It is worth connecting our results to Oury and Tercieux (2012). There, Theorem 3 shows
that any social choice function that is strictly continuously implementable must satisfy a
form of monotonicity (formally, strict interim rationalizable monotonicity, see Definition
8 of that paper). The present theorem effectively shows that under Assumption 3, the
same implication extends to all continuously implementable social choice functions.

DEFINITION 7. Let T = (T, x) be a model. Denote by W (t;, M) the set of (interim correlated)
strictly rationalizable messages of type t; in U (M, T') defined as follows:
Let WIQ (t;, M) = M,. Inductively, for each k > 1, a message m; € Wl.k (t;, M) iff there is
someyu_; € A(O x T_; x M_;) such that
R1: {m;} = argmax, Yo, Ui (m!,m_;,0) marg pexm_, [0, m_i);
R2: marg x1 ; i = Kt/
R3: u_; ({(G,t_i,m_i) tm_; € WE (t_i,/\/l)}) =1
Then, W (t;, M) = N WK (t;, M).

We can now define implementation in strictly rationalizable action profiles:

DEFINITION 8. We say f is implementable in strictly rationalizable action profiles by mechanism
M if for every t € T, we have ¢ (m) = f (t) for every m € W™ (t, M).

THEOREM 5. Suppose that Assumption 3 holds. An SCF f is continuously implementable w.r.t.
dP by a finite mechanism only if f is implementable in strictly rationalizable action profiles by a
finite mechanism.

As we pointed out earlier, our proof techniques in Theorem 1 apply to any mecha-
nism such that at the baseline information structure there is an equilibrium which is both
full-range and implements our desired social choice function. The desideratum of “equi-
librium continuous implementation” would be defined with respect to this equilibrium,
by analogy to definition 1. It should be clear that our characterization of Theorem 1 con-
tinues to hold in such a case. The gap between Theorem 1 and Theorem 5 is that the latter
allows for mechanisms that contain messages not sent by any type in the baseline infor-
mation structure (as in the construction of Claim 2). This also further clarifies the trade-off
between Oury and Tercieux (2012) and our paper. The trade-off is not that they allow in-
direct mechanism whereas we focus on direct revelation mechanisms. Our approach has
more bite in the classical literature where messages are cheap talk. This enables us to
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study the robustness of the revelation principle (Assumption 3 reduces to Assumption
1 when applied to direct revelation mechanisms and truthful strategies being the equi-
librium). The cost is that we need these kinds of “richness” assumptions to make any
progress. Conversely, their approach needs no such richness assumption, but instead ap-
peals to a vanishing cost of messages. This allows them to provide a full characterization
of continuous implementation of a social choice function. In particular they show that
continuous implementation is equivalent to rationalizable implementation of the social
choice function in the baseline environment.

We should note that Theorem 5 only provides necessary but not sufficient conditions:
the strict rationalizable correspondence need not be upper-hemicontinuous. Therefore
we cannot conclude that a social choice function that satisfies this condition will be con-
tinuously implementable with respect to the product topology. Of course, we know from
Oury and Tercieux (2012) that rationalizable implementability of the social choice func-
tion is sufficient. There is, therefore, a gap between the necessary and sufficient conditions
in this setting. A full characterization appears out of reach.

5. AN EXAMPLE: NATURAL RESOURCE AUCTIONS

It may be useful at this stage to develop an example to help readers appreciate the
implications of our results in a classical applied mechanism design setting.!! To that end
consider the following variant of a natural resource auction model. For ease of exposition
and description, the model we describe below has sets of types and alternatives that are
(uncountably) infinite in cardinality, so our results formally do not apply. However, it
should be clear that this model can be appropriately discretized so that our results directly
apply (at the cost of clarity/ brevity).

There is a principal (e.g. the government) who wishes to auction a license to utilize a
natural resource, e.g. a license to drill wells at a particular tract of land. The tract has
an unknown quantity of oil 4. For simplicity, we assume that the price of oil p € R, is
commonly known. There are 2 competing buyers. Buyer i = 1,2 has a privately known
tixed-cost c; to operate the drill. The net value to buyer i of winning the license to operate
the tract for a license fee of [ is therefore pg — c¢; — I. The quantity of oil in the tract is not
known. Instead, each buyer receives surveys, with information about the quantity of oil
g underlying: in particular, a survey contains a noisy estimate e = g + ¢ where ¢ is mean-0
noise.

The set of alternatives the principal considers is A = {1,2} x Ry x R4, that is to say
which buyer the license is allotted to and how much each buyer is charged.

e thank Muhamet Yildiz for suggesting this application.
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Baseline Information Structure. In the baseline considered by the principal, each buyer’s
cost ¢; is i.i.d. drawn from a commonly known distribution C with support on some
interval [c,c] C R.. Further, the true quantity g is distributed according to a commonly
known distribution Q with support on interval [0,7] C R So the private information of
a buyer can be denoted by a K + 1-tuple (c;, e;) where ¢; = (e}, ..., eK). Define g(¢;) as the
posterior expected quantity of a buyer who sees surveys (estimates) e;.

In the baseline information structure, the buyers both receive the same set of surveys,
ie. for any k < K, e’l‘ = e’z‘. Note that the baseline information structure is therefore
effectively one of pure private values (there is complete information of the quantity of oil,
and therefore the only heterogeneity among buyers is the private costs).

The principal is interested in continuously implementing the social choice function cor-
responding to the dominant strategy outcome of a second-price auction in this setting.
That is to say, the scf of interest is defined thus: when i has private information (c;, ¢;),
calculate pg(e;) — c;, i.e. the gross expected value of buyer i for the tract. Assign the good
to the buyer with the higher expected value, and charge them the other’s expected value.
Observe that the realized net utility of the buyer depends on the actual amount of oil
present in the resource.

REMARK 2. The direct revelation mechanism version of this is to ask each buyer to report their
private information (c;,e;), and calculating their expected value from this and then running a
second-price auction. Standard results from auction theory tell us that reporting private informa-
tion truthfully is a weakly dominant strateqy in this mechanism.

For any buyer, the set of all reports that results in the same expected value are strategically
equivalent. In the reduced-normal-form, therefore, the set of strategies for the buyers is simply
the range of feasible expected values— and we know that bidding truthfully is a strict Bayes-Nash
equilibrium in this reduced normal form. However note there exist other rationalizable strategies—
for example, it is an equilibrium in this setting for one agent to report corresponding to the highest
possible bid (pq — c) and the other agent to report corresponding to a bid of 0.

Now let us investigate two possible perturbations of this baseline information struc-
ture:

(1) In the first, it is common knowledge that there are K surveys, but each buyer places
some small probability that the other only saw some subset of these surveys. As
motivation, consider that all the surveys were commissioned by some public au-
thority, but agents consider the possibility that the other did not get access to some
of the surveys in time before submitting a bid.

(2) In the second, the total number of surveys K is not common knowledge. Each
buyer places some small probability that the other saw additional surveys. For
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example, there are a large number of experts who have informative estimates, and
each buyer considers the possibility that the competitor consulted additional ex-
perts privately.

Intuitively, the former corresponds to perturbations that remain close to the baseline in
the uniform-weak topology. The latter on the other hand is an e-mail game type structure
that corresponds to perturbations in the product topology.

In light of Remark 2, our results now have the following implications:

(1) Theorem 1 tells us that the principal’s desired social choice function cannot be
truthfully continuously implemented with respect to perturbation (2). To see why,
note that even though the baseline is one of private-values, perturbation (2) ex-
poses each agent to (severe) adverse selection. Each agent considers the possibility
that their competitor has a more accurate estimate of the quantity of oil in the well,
and therefore will only win when the true amount of oil is smaller than the expec-
tation conditional on their own signals. One can therefore construct a sequence of
types converging to the baseline whose unique equilibrium strategy is to bid 0.

(2) Theorem 2 tells us that the principal’s desired social choice function can be truth-
fully continuously implemented with respect to perturbation (1). Theorem 3 tells
us that expanding the class of mechanisms does not expand the set of social choice
functions that can be continuously implemented with respect to perturbations of

type (1).
6. RELATED LITERATURE

There is a large, influential literature on the connection between higher-order beliefs
and strategic behavior, beginning with the email game paper of Rubinstein (1989) and
the subsequent global games paper of Carlsson and Van Damme (1993), too large to com-
prehensively cite here. Indeed, within this field there are now at least two influential ap-
proaches: the ex-ante approach of e.g. Kajii and Morris (1997), and the interim approach
of Weinstein and Yildiz (2004) and Weinstein and Yildiz (2007). As we stated earlier, our
approach borrows ideas from the latter.

There is also a large literature considering robustness in mechanism design. It bifur-
cates into “global” and “local” approaches.!? In global approaches (see e.g. the pioneer-
ing works of Bergemann and Morris (2005); Chung and Ely (2007)) the planner has no
information on the information structure (model) that will prevail among agents. The
planner wishes to implement the social choice function on all models she considers possi-
ble. By contrast, in the local approach (see e.g. Chung and Ely (2003), Oury and Tercieux
mill not dwell on these, intermediate notions of robustness, where the principal rules out some
possible beliefs among the agents, have also been recently formulated and characterized—see e.g. Olldr

and Penta (2017).
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(2012), Jehiel, Meyer-ter Vehn, and Moldovanu (2012) or Aghion, Fudenberg, Holden,
Kunimoto, and Tercieux (2012)) the planner has some specific model in mind but is not
entirely confident about it. The requirement therefore is analogously local, i.e. that the
social choice function be implemented at types close to the initial model. This paper falls
in the latter camp so we focus our discussion on related works in this vein.

The formulation of a “local” approach to robustness that we use in this paper was
pioneered by Oury and Tercieux (2012). Our results have some counterparts to theirs. We
therefore first discuss the connection to their paper before mentioning other work.

The biggest difference in setups is that we mainly consider implementation by “direct
revelation mechanisms.” This assumption allows us tighter characterizations of (truth-
ful) continuous implementation under the product topology. In the “forward” direction
they consider the stronger desideratum of strict continuous implementation, and show
that strict monotonicity of the social choice function is necessary for strict continuous
implementation. To get a full characterization, and to study continuous implementation
directly (as opposed to strict continuous implementation), they enrich the model to con-
sider that sending various messages may involve small costs to the agents. By contrast,
our assumptions allow us a full characterization without either (i.e. the strengthening
of desideratum to strict continuous implementation, nor the possibility of costly mes-
sages). Another critical difference between our result and theirs is that our Theorem 1 is
a characterization for the implementing DRM whereas their counterpart (Theorem 4) is a
characterization of implementability (i.e., the mechanism that achieves rationalizable im-
plementation is different from the mechanism that achieves continuous implementation
in general (and also in their proof)).

They do not consider the uniform-weak topology but do hint at similar results in one
direction (see, e.g., Footnote 16 of their paper). Our results on the uniform-weak topol-
ogy thus both strengthen their results, and also constitute a key intermediate step to our
characterization in the product topology.

Another closely related paper is that of Oury (2015), who characterizes continuous im-
plementation as equivalent to full implementation in rationalizable strategies by intro-
ducing local payoff uncertainty of the planner. Assumption 1 in that paper embeds the
set of states © into a larger set of states ®*, where these additional states allow to resolve
indifferences.'

At a high level then, the difference between our approach and these two papers is that
they consider general mechanisms, and obtain their characterization by extending the
Wion, the definition of local payoff uncertainty is as follows (Assumption 1) —there is a baseline
model 7, and the set of states of the world considered by types in the baseline is ®. However, the principal

envisages a larger set of states ©*, where ® C ©* and for every agent i, action 2 and state 6 there exists a
state 6*(0,a, i) such that u;(a,0*(0,a,i) > u;(a,0) and u;(a’,0*(0,a,i)) = u;(a’,0) for any other a’ # a.
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model (costly messages in the case of Oury and Tercieux (2012), additional states in the
case of Oury (2015)). We instead cover only direct revelation mechanisms, and look at the
robustness of a specific equilibrium (truthful equilibrium). Conversely our richness con-
ditions (e.g. Assumption 1 or 2) can be verified directly within the benchmark model T
and our robustness exercise requires no extra payoff-relevant perturbation beyond what'’s
specified in the benchmark set of states ©.

A recent closely related paper that takes a different approach is Takahashi and Tercieux
(2011): they study robust equilibrium outcomes rather than robust equilibrium behaviors
(recall our discussion after Definition 1). Formally, they look at sequential games where
there is almost common certainty of payoffs (for our purposes, “almost” refers to being
close in the uniform-weak topology). The latter means that their results do not directly
apply to our setting: our Theorem 3 requires the domain of the SCF to have a product
structure, while almost common certainty implies the baseline typespace is entirely the
diagonal. That said, their results imply that if a social choice function is implemented via a
mechanism with a unique subgame perfect equilibrium outcome, continuous implemen-
tation in the uniform-weak topology follows. Therefore, when considering continuous
implementation with respect to the uniform-weak topology around common certainty of
payoffs, a revelation principle does not apply.'*

As we alluded to earlier, other papers have raised similar questions about “local” ro-
bust implementation. Chung and Ely (2003) ask about the possibility of (full) implemen-
tation in undominated Nash equilibrium while additionally requiring that Bayes-Nash
equilibria of settings with arbitrarily small uncertainty also be close to the social choice
function. They show that monotonicity of the social choice function is a necessary con-
dition in their setting (while full implementation in undominated Nash equilibrium is
possible for any social choice function under complete information). Aghion, Fudenberg,
Holden, Kunimoto, and Tercieux (2012) consider subgame-perfect implementation under
similar perturbations. Jehiel, Meyer-ter Vehn, and Moldovanu (2012) get a negative result
similar in interpretation to ours, but in a different setting, where the multi-dimensionality
of agents’ signals drives the result. Postlewaite and Wettstein (1989) pursue the idea of
a feasible, continuous function that achieves Walrasian outcomes in an exchange econ-
omy. Continuity is with respect to small perturbations of the initial endowments, as a
substitute to modeling incentive constraints.

Our work is also connected to the literature on informational size beginning with McLean
and Postlewaite (2002). These papers consider settings close to complete information,
mailure of revelation principle occurs because of our requirement that the equilibrium strategies
of close by types converges to truth-telling (part (b) of Definition 1) instead of the restriction of using a DRM.

Further details are available from the authors on request. We thank Satoru Takahashi and Olivier Tercieux
for discussions on this topic.
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and argue what can be thought of as continuity results—when the state is approximate
common knowledge, small transfers are sufficient to elicit the private information of
agents. Most papers in this line consider settings with transfers, except Gerardi, McLean,
and Postlewaite (2009). Our results in the uniform-weak topology can be thought of as
complementing their findings—both suggest that in settings with approximate common
knowledge of the information structure, a desired social choice function may be imple-
mented. While they consider richer settings, they also assume a common prior among
agents that is known to the principal.
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APPENDIX A. OMITTED PROOFS

PROOF OF LEMMA 1. Suppose that f is continuously implementable w.r.t. 4** by mech-
anism M = (M, g). Consider a model 7 = (T, x) defined as follows. Let

T, =T;| | L ] {t.<tj’9”t/f> } .
jn
<9/,i’j,i’/7j> GT}‘X@XT,]‘ n=1

where we set Kt = Ktj for every t; € T;; moreover, let

1\_ 1
Kt<tj,9’,t/_j) - (1 - E) Kt]' + Eé@ﬁtij)’vn € IN.

jin
It is straightf dt ify that duw t(tj'g/'t/*» £ 0. S instead that f
is straightforward to verify that d} in ,ti | — 0. Suppose instead that for

some agent i, and some pair of types f; and t} in T;, ¢ neither strictly rewards truth-telling
at t; over t; nor does t; always weakly dominate  in g, i.e.,

Yoo (w8t t),0) —ui(g(ti,ti),0)] &t [(6,¢-)] >0 (1)

(G,t,i)e(axT,i
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and for some t' ; € T_;and ¢/,

Uj (g(t:; tl_i, 9/) — U; (g(tl', tl_i, 9/) > 0. 2)
(t,0 1)

A
in

Hence, under o_;, by reporting t, agent i with type ¢ gets interim expected payoff

equal to

(1_%) Y ui(g(t,t),0) ff,.[(e,ti>]+%ui(g(t§,t’_i>,6’)-
(6,t_

,‘) €O XT,,‘
Then, by (1) and (2), for agent i with this type, reporting ¢’ is strictly better than reporting
(k0 ;) :
! — 5ti' This

t; for all n large enough. But then it cannot be the case that o; | ¢;

contradicts the supposition that M continuously implements f.

PROOF OF THEOREM 1. (<=): Let 7 be a model with 7 O 7. Since T is countable and
T is finite, a standard fixed-point argument implies that there is a BNE ¢ in the game
U(g,T). Let & be the strategy profile in § induced from o, i.e., for each t € T, we set
7 (t) [f] = o (t) [f] where [ is the set of messages strategically equivalent to f in the DRM
g. Since ¢ is a BNE in g, it follows that & is also a BNE in §.

Since R® (t,§) = {f} for t € T, by the upper hemicontinuity of the rationalizable
correspondence R® (-, $) (see, e.g., Theorem 2 of Dekel, Fudenberg, and Morris (2006)),
there is some ¢ > 0 such that

d¥ (t,t;) <e= Ry (t,8) = {f:}

Since & is a BNE in §, it follows that &; (t;) = & for any t; € T; with d? (#/,t;) < e. Hence,
for any t! € supp 0; (t;), we have that ¢, is equivalent to ;. Define a strategy profile ¢’ in
U(g T)as
SN 5;1,, if d? (t;, ti) < g
;i (ti) = / :
0; (t}), otherwise.

Since ¢ is a BNE in U (g, 7), that ¢’ is also a BNE. Moreover, ¢ () = f (t) foreveryt € T
and by construction ¢’ also satisfies requirement (b) in Definition 1.

(=): Fix a DRM g that truthfully continuously implements f w.r.t d4P. Since f is truth-
fully continuously implementable by ¢ w.r.t. dP, f is truthfully continuously implementable
by g w.r.t. 4"V, By Theorem 2 and Corollary 1, f is implementable in strict BNE in §.

The following lemma will be useful.

LEMMA 3. For each k > 1 and ¢ € (0,1), there is a countable model Ty, O T such that
Tipe = Tiand Ty, = (Utiei Rf (£, § )) U T je—1e-
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Fix any BNE & of the the game U (§, Ty.¢) with & (t) = &; for every t € T. This model has
the property that for each type t;y . (F}, t;) (the type in Ty . that corresponds to (T}, t;) such that
[ € R (£,9)),

(1) df (ty, (1,0) 1) <&

(2) i (tike (F 1)) = O

This lemma appears a little convoluted but is at the heart of our proof. It constructs
a countable model 7 . with following property: Consider any Bayes Nash equilibrium
7 of the game of incomplete information U(g, 7 ) with the property that types in T all
report their type “ truthfully.” In other words, each type t; sends the reduced normal form
message f; in § corresponding to the equivalence class which the type ¢; falls in. Further,
consider any message ! € R¥(t;,§), i.e. any message that survives up to k rounds of
iterated deletion of never best response in § for type t; of player i.

The model 7 . is constructed such that there exists a type of player i, t; s (f;, ti) that is
e-close to t; in their k-th-order beliefs; moreover, player i of type t; . (f;, ti) must play 7,
under the BNE ¢.

Before we present the proof of Lemma 3, let us conclude the now routine proof of
Theorem 1. Consider the countable model 7 where T; = [ ;2 T; 1 and T 1 is given as
in Lemma 3.

Since f is truthfully continuously implementable w.r.t. dP, there is a BNE ¢ in the game
U (g, T) such that requirements (a) and (b) in Definition 1 hold. Again, ¢ induces a BNE
7 in §. Since o (t) = J; by requirement (b) of Definition 1, we have 7 (t) = ;.

Thus, it follows from Lemma 3 that for each f; € R (t;,§), for each k, there is a type
ikl (E,t;) € T; such that

- 1
dic (ti,k,% (t;/ tz) /i{() < El (3)
and
i (11 (B1)) = oy
It follows from (3) that df <ti,k,% (f;, tl-) , t,-> — 0. Since o satisfies requirement (b) in
Definition 1, we know that it must be the case that ¢; (ti 1 (%, t,-)) — Oz Hence, il =*.

Finally, since £/ € R{® (t;, §) is arbitrary, we conclude that f; is the unique rationalizable
message profile at  in §. |

PROOF OF LEMMA 3. Formally, fix ¢ € (0,1) and we prove the claim by induction. First,
the claim trivially holds for k = 0. Now we prove the claim for k > 1, assuming that
it holds for k — 1. Denote by T; the messages of agent i in the reduced-form ¢, namely
T, = {f;: t; € T;}. By definition, each . € R¥(t;, §) is a best response to some belief
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p_i € A(®xT_; x T_;) such that:
marge,.r | H-i = K,
and p_; ({(6, t g, F): P, e R (t,i,g)}> =1

By the induction hypothesis, there is a mapping 17_;;_1, from each t_; € T_;and i €
RE(t 8 toatypet ;g 1, (P, t_;) such that (1) and (2) in Lemma 3 hold.

Since #! is in the reduced form § of the DRM g, ! is the equivalent class which includes
some t/ € T;. Then, define Koo (B1) EAO X T _jke)

71 _
Ktie(It) — (1—¢) (P‘fi ° ’7_i,k—1,s> + €Ky,

That is, with probability (1 —¢), type f;x (F,t;) believes that the state and the oppo-
nents’ types follow a distribution thatis induced from y_; (in whicheach t_;;_1 . (fL i t,i)
plays o_; (t_jx1.e (F ;i) = dy by the induction hypothesis); with probability ¢,
type tixe (f,t;) has the same belief as type t/. Since f/ is a best response against p_;
and the strict/ unique best response against Ky in g (by Corollary 1), it follows that
i (tige (F, 1)) = dy. Moreover, since

dk__zl (tfi,kfl,s ({Liz t—i) ’ tk__ll) <¢g,

we have that d¥ (ti'(,k,e (F,t), tf) <e. [ ]

PROOF OF THEOREM 2. (=) Observe that when a DRM g strictly rewards truthtelling at
t; over t!, then t] cannot always weakly dominate ¢;. Thus, it follows from Lemma 1 that if
f is truthfully continuously implementable by a DRM g, then t always weakly dominates
t; if and only if t; always weakly dominates t/, i.e., they are strategically equivalent in the
sense of Definition 3.

(<)Let g be a DRM that truthfully continuously implements f in the sense of Definition
1. Hence, g (t) = f (t) for every t € T. Now consider a model 7 D 7.

Note that we can pick e > 0 such that for each 7, and t; and ¢t} such that g strictly rewards
truthtelling, we have

A-6) ¥ (gt t-0),0) —ui (gt t-),0)] %, [6,6-)] >eD. (@)
(0,t_)€EOXT_;
Here D is defined as
D = max |u; (g (t),0) —u; (g (¥'),0)].

itt0
Moreover, we may decrease ¢ further so that the following two conditions are satisfied:
firstly, for any agent i and any t; and ¢/, the (d¥",¢)-ball around t; does not overlap with
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the (d}lw, 8) -ball around t;, i.e. these balls are disjoint; and secondly,
di™ (8, 1) <e
=y [{(0,£-)}] € [(1 —e)rs, [(0,8)], (1 + &)y, [(6, )] )

where {(6,t_;)}* denotes the (4", ¢)-ball around (6,t_;). In words, consider any type #/’
which is e-close to the baseline type t;. For every (6, t_;) baseline considers possible with
probability %, [(6,t_;))], the type t/ puts a close by belief on the set (6, t_;)* consisting of
types (d%,¢) close to t_;.

Consider the agent normal-form of the game U (M, T') with the restriction that !’ in
the ("%, ¢)-ball around #; must report ¢;. Denote this game with restriction by U (M, T).

Since T is countable and T is finite, a standard fixed-point argument implies that U (M, T)
has a BNE ¢. By construction of U (M, T), for any sequence d"V (t,,t) — 0, we have
o (t,) = t for n large enough.

Furthermore, ¢ is a BNE in the original game U (M, T). To see this note that for any
agent i in the ¢ ball around ¢;, given that all other agents —i in the e-ball around (6, f_;)
are reporting t_;, the unique best response is to play t;. This follows due to (4) and (5).

Therefore, g truthfully continuously implements f with respect to d"". u

PROOF OF LEMMA 2. Suppose that f is continuously implementable w.r.t. 4** by mech-
anism M = (M, g). Consider a model 7 = (T, x) defined as follows. Let

-ty U Ol
Jn
<9/,f]‘,t/7j>€T]‘X®XT,]‘n:1

where we set Kt = K, for every t; € T;; moreover, let

1\_ 1
Kt<t]-,9’,t’_j) = (1 - E) Ktj + ;(s@/’ﬂ—j),vn & IN.

JEL
It is straightf. dt ify that duW t<tj'9/'t/‘j> £ 0. Si i ti ]
1S S ralg orwar O veri y a ] j,i’l rLj — . 1mnce f 1S contimuous y

implementable w.r.t. 4"V by M, there is an equilibrium ¢ which continuously implements
finU(M,T). Since conti_nuously implements f in U (M, T), we have (a) o|7 is a
pure-strategy BNE in U (M, T) ; (b) g (¢ (tx)) — f (t) for any sequence of type profiles
{ty} C Tand t € T withd (t,,t) — 0. Since Tp = T, it follows that

glo(t) = f(t),VteT (6)
[ () (. o T
g ((71 (ti,n ) LU (t_l)> — f(t,ty), Vi €T (7)
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Suppose to the contrary that for some agent i, the SCF f neither strictly rewards t; over
m!; nor does t; always weakly dominate m/ in ¢ (or more precisely 7 = o|zin U (M, T)),
ie.,

Y [wilg(miomi(t=))),0) —ui(g(oi (t:), o (t-1))),0)] % [(0,£-5)] = 0. (8)

(9,t_,-)6®><T_i

and for some ' ; and ¢/,

u;i (g (mi,o—i(t-4))),0) —ui (g (0 (t:),0-i (t-1))),0) > 0. (9)
(0 1)

First, under o_;, by reporting m/, agent i with type ¢ gets the interim expected

payoff equal to
1 _
(1 — _) Y. ui(g(mi,o_i(t—)),0) %, [(6,—)]
(0t

n )EOXT_;
1
+—u; (g(mi, 0 (£4)),6')

where the equality follows from (6). Second, by (7) for each t_; € T_;, there is some
Mf’i C M,; such that for any sufficiently large n,

(ti,G’,t’_i) t; 1 )
7, (ti’n ) M > 1 T
g(myoi(ty)) = f(tity) =g (@ (t), T (t;)),Vm e M. (10)

Since T_; is finite, it follows that for sufficiently large 1, we have

(tf,,i"""f")){ N Mff] > L o (") ] -7y >0 a

t_;eT_; t_;,eT_;
Finally, under o_;, by reporting m; € (), 7 Mf‘i, agent i of type ti(’:;'e A1) gets the
interim expected payoff equal to
1 —
(1-3) B wrlalmo (-),0) % (0, 1)
(9,t_i)€®XT_i
1
Tt (g(mi,o-i (t;)),6)
1 _ _ _ 1
= (177) L w @), o) 6]+ s (1)), 0)
(9,1’,,‘)6@)(?,,‘
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where the equality follows from (10). Then, by (8), (9) and (11), agent i of type ¢ i(,;i'e =)
can profitably deviate by assigning the probability on (), 7 . Mf’i to m/ instead. This is

a contradiction to o being a BNE. [

PROOF OF THEOREM 4. Suppose that M continuously implements f w.r.t. dP. To prove
that M strictly continuously implements f w.r.t. dP, consider any model 7/ = (T, «').
Denote by 7" = (T”,«") the disjoint union of 7/ = (T’,x’) and the model 7 = (T, k) con-
structed in Lemma 2. Then, we must have some BNE ¢ which continuously implements
fin U (M, T") (and there by in U (M, T)). It follows from Lemma 2 that |7 satisfies
the property that for each agent i, each type f; in T; and message m! € M;, we have either
0|7 strictly rewards t; over m/; or t; always weakly dominates m/ in BNE ¢z Since T
has full support, if t; always weakly dominates m/} in |5 and ;|7 (¢;) is not strategically
equivalent to m!, the message m! must yield strictly lower payoff than o;|7 (¢;) for type ;.
Hence, it follows from Assumption 3 that 0|7 is a strict BNE in U (M, 7). It follows that
o continuously implements f in U (M, T"). Hence, M strictly continuously implements
f wr.t. dP. |

PROOF OF THEOREM 5. Since M = (M, g) continuously implements f w.r.t. dP, by The-
orem 4, we may assume without loss of generality that M strictly continuously imple-
ments f w.r.t. 4°. We start by proving the following key lemma.

LEMMA 4. For each pure-strategy strict BNE 7 in U (M, T) and k > 0, there is a model T,” O
T such that T, = T; and

Te=| U Wit M) | LT
i’,‘GT,‘

Fix any BNE ¢ of the the game U (M, T,7) such that | = . This model has the property
that for each type t; . (m;, t;) (the type in T; . that corresponds to m; € WZ‘ (t;, M)),

(1) £ (mi, ;) = t5;

(2) 0 (i (mi, t;)) = Om;-

Consider any message m; € WK(t;, M), i.e. any message that survives up to k rounds
of iterated deletion of never best response in M for type ; of player i. The model 7,7 is

constructed such that there exists a type of player i, t; ; (m;, t;) that has the same k-th-order
beliefs; moreover, player i of type t; x (m;, ;) must play m; under the BNE o.
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Before we present the proof of Lemma 4, let us conclude the now routine proof of
Theorem 5. Consider the countable model 7 where

T, = | (Iil k)

0 is a pure-strategy strict BNE in U(M,?) k=0

and Tgk is given as in Lemma 4. Since M strictly continuously implements f w.r.t. 4P,
there is some BNE ¢ which strictly continuously implements f in U (M, T'). Hence, ol
is a pure-strategy strict BNE in U (M, T). It follows from Lemma 4 that for each k and
each m; € WK(t;, M), there is a type tf,k (m;, t;) € T; such that

tﬁfk (my, t;) = (12)

and
0; (tix (mi t;)) = 6m;-
It follows from (12) that d}o (tix (m;,t;),t;) — 0. Since M strictly continuously imple-
ments f, we know that it must be the case that ¢ (o (t (m,t))) — f (t). Since o (t (m, t)) =
m, it follows that g (m) = f (t) for every m € W* (t, M). [

PROOF OF LEMMA 4. First, since o|; = 7, the claim trivially holds for k = 0. Now
we prove the claim for k > 1, assuming that it holds for k — 1. By definition, each
m; € WK(t;, M) is a strict best response to some belief u_; € A (@ x T_; x M_;) such
that marg .7  p—i = & and p_; ({(G,t_i,m_i) im_; € Wflfl (t_i,/\/l)}) = 1. By
the induction hypothesis, there is a mapping #_;r_1 fromeach t_; € T_; and m_; €
Wfl_.l (t_iy M) toatypet_j,_q1(m_;t_;) such that (1) and (2) in Lemma 4 holds. Define
€A (@ X Ti’,k) as

Kfz‘,k(mi,ti)

Kt (mit;) = =i © W:il,k—l'
That is, type t; (m;, t;) believes that the state and the opponents’ types follow a dis-
tribution that is induced from p_; (in which each t_;;_q (m_;,t_;) plays m_; in BNE
o by the induction hypothesis). Since m; is a best response against y_;, it follows that
i (tix (mj, t;)) = Om,. Moreover, since tk:l.}{fl (m_;,t_;) = t*71, we have that ti‘c,k (m;, t;) =
t. ]
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