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Abstract

We study the behavioral implications of Pearce’s (1984) notion of extensive-form rationalizability

(EFR) in a broad range of constantly monotone preferences (which require that, conditioning

on every contingent event, a constant act that attains a higher payoff will be preferred over

another constant act that attains a lower payoff). In a generic class of perfect-information

games without relevant ties, we formulate and show that EFR under various preference models

yields the unique backward induction (BI) outcome regardless of the elimination order of EFR,

even though the EFR strategy profile and the BI strategy profile might be largely distinct. Our

result implies that EFR strategic behavior in a variety of preference models is observationally

outcome-indistinguishable from the one in a subjective expected utility (SEU) model in a generic

game. In a model consisting of all constantly monotone preferences, we show that EFR gives

rise to the BI plan of action for all players in generic games without relevant ties in the sense of

Heifetz and Perea (2015). JEL Classification: C70, C72
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1 Introduction

Pearce (1984) puts forward the notion of extensive form rationalizability (EFR henceforth), which

embodies a form of forward induction reasoning: “A player should use all information she acquired

about her opponents’past behavior in order to improve her prediction of their future, simultaneous,

and past (unobserved) behavior, relying on the assumption that they are rational”(Battigalli 1997,

p. 41). EFR and backward induction (BI henceforth) are conceptually distinct and often have

different strategic implications. Somewhat surprisingly, as shown by Reny (1992) and Battigalli

(1997), EFR and BI must yield the same terminal node in generic games. That is, EFR and BI are

outcome-equivalent in a generic class of “perfect-information games without relevant ties”; cf. also

Heifetz and Perea (2015); Perea (2019).

Pearce’s EFR is defined within a Bayesian framework, in which players are implicitly assumed

to maximize the expected utility given a probabilistic belief about opponents’ strategy choices.

Though subjective expected utility maximization is undoubtedly the dominant model in economics,

many economists would probably view axioms such as “transitivity” or “monotonicity” as more

basic tenets of rationality than the sure-thing principle and other components of the Savage (1954)

model. The Ellsberg paradox and related experimental evidence demonstrate that a decision maker

may display an aversion to uncertainty or ambiguity, and thereby motivate generalizations of the

subjective expected utility model; see, e.g., Camerer and Weber (1992); Etner et al. (2012); and

Gilboa and Marinacci (2013) for surveys on recent developments. Moreover, Bayesian updating is

closely related to the dynamic consistency property; violations of dynamic consistency are to be

expected if preferences violate the sure-thing principle and such preferences are employed to analyze

dynamic-choice problems (cf. Epstein and Le Breton (1993); Ghirardato (2002); and Siniscalchi

(2012) for more discussion). The notion of “rationality”should, therefore, be extended to accom-

modate various modes of behavior with dynamically (in)consistent preferences. The main purpose

of this paper is to extend the aforementioned outcome-indistinguishability result of EFR to a variety

of preference models, including many important models that arise in economic applications.

We take a preference-based approach to EFR by using the notion of a model of preference. A

model of preference is a collection of “conditional preference families” (CPF) adopted by players

in a game; a CPF for a player specifies the player’s preference conditioning in every contingency.

In particular, we consider a class of admissible preferences called “constantly monotone” (CM)

preferences, which require only that one strategy be preferred to another strategy if both strategies

generate constant payoffs and the former constant payoff is higher than the latter (Definition 1).
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The property of constant monotonicity appears to be a fairly weak and innocuous assumption on

preferences, because many preference models discussed in the literature satisfy the property. No-

tably, a CM preference may have no utility function representation, and may not even be complete

or transitive. Our analytical framework is also flexible to accommodate dynamically (in)consistent

preferences; it is applicable to a wide variety of preference models discussed in the literature–

e.g., the subjective expected utility (SEU) model (Savage 1954), the ordinal expected utility model

(Börgers 1993), the probabilistic sophistication model (Machina and Schmeidler 1992), the maxmin

expected utility model (Gilboa and Schmeidler 1989), the Choquet expected utility model (Schmei-

dler 1989), the regular preference model (Epstein and Wang 1996), the lexicographic preference

model (Blume et al. 1991), the smooth ambiguity model (Klibanoff et al. 2005), and the obviously

dominant preference model (Li 2017).

We define the notion of EFR for a preference model by an iterative elimination of “inferior”

strategies (Definition 2). We show that the outcome equivalence between BI and EFR holds for a

wide range of modes of behavior. More specifically, we show that for a variety of preference models,

the EFR strategy profiles result in a unique BI outcome in generic games without relevant ties

in the sense of Battigalli (1997); moreover, this outcome equivalence holds regardless of different

elimination orders of EFR (Theorem 1). This result extends Battigalli’s Theorem 4 to general

preferences. For the CM preference model, we show that in a generic game without relevant ties in

the sense of Heifetz and Perea (2015), EFR gives rise to the BI plan of action– that is, EFR and

BI are indistinguishable in terms of plan of action (Theorem 2).1

It is worth noting that EFR is nonmonotonic with respect to preference models (e.g., the EFR

solution set under the SEU model fails to be a subset of the one under the CM model); cf. the

illustrative example in Section 2. The lack of monotonicity is related to the “order-dependent”

aspect of EFR: Different elimination orders may lead to different solution sets; cf. also Catonini

(2020) for more discussion. Although EFR strategic behavior under different preference models

might be distinct, our main result shows that EFR under a broad class of preference models is

observationally indistinguishable from the BI outcome in a generic game.

Our study has a number of implications. First, from an outside observer’s point of view, the

preferences and strategy– i.e., a complete plan of action– of a player are unlikely to be observed

in dynamic games. Theorem 1 offers an indistinguishability result in terms of realization outcome:

1A “plan of action” or “reduced strategy” for a player is part of his strategy that specifies the player’s actions
only at decision nodes that are not precluded by his strategy. Rubinstein (1991) points out that if a strategy of a
player is interpreted as a plan of action in a literal manner, it should not need to specify actions after histories that
are impossible if the player carries out his strategy.
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In generic games, EFR under general preferences yields the same outcome of EFR in the Bayesian

framework. In the same vein, Shimoji and Watson (1998) show that Bayesian consistency in

Pearce’s EFR is behaviorally irrelevant. Our indistinguishability result holds true not only for

Bayesian models, but also for non-Bayesian models (e.g., the maxmin expected utility, the Choquet

expected utility, and the regular preferences).

Second, EFR captures a forward-induction argument. Theorem 1 implies that forward and

backward induction reasoning generically lead to the same outcome, even if players are allowed to

adopt different modes of behavior that arise from different models of preference. This outcome

equivalence is irrespective of the elimination order of EFR. In the Bayesian framework, Chen and

Micali (2013) show the order independence of EFR outcomes in extensive games. Our outcome-

order independence is applicable to a wide range of preference models. Moreover, this result holds

for small perturbations on payoffs (Corollary 1). Consequently, the BI outcome can be viewed as a

robust implication of EFR under a broad class of preferences in generic games.

Third, in the case of generic perfect-information games, Aumann (1995) shows that “common

knowledge of rationality”yields a unique BI strategy profile in a generic game; Perea (2014, The-

orem 6) shows that “common belief in future rationality” implies the unique BI strategy profile.

Theorem 2 asserts that EFR must lead to the BI plan of action for every player in such a generic

game, given that players have constantly monotone preferences. Theorem 2 thus offers a novel

rationale for BI: By allowing for more admissible preferences in generic games, BI can be supported

by EFR through the lens of a plan-of-action strategy, even though the latter embodies a form of

forward-induction reasoning. In contrast, the notions of Aumann’s rationality and Perea’s future

rationality rely critically upon the assumption that players are completely forward looking– i.e.,

they only reason about opponents’behavior in the future of the game, and take opponents’past

choices for granted without drawing any conclusions from their past behavior. A distinct fea-

ture of our justification for BI is that players can make both kinds of forward/explanatory and

backward/predictive inferences in a broad domain of preferences.

The rest of the paper is organized as follows. Section 2 offers an illustrative example, Section

3 introduces our analytical framework, and Section 4 presents the main results. Section 5 includes

a number of notable models of preference, and Section 6 concludes. To facilitate reading, all proofs

are relegated to the Appendix.
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2 An illustrative example

The following example, due to Battigalli (1997), demonstrates the main result of this paper.

Fig. 1. A generic game.

Apparently, BI yields a unique strategy profile (S1S3, S2S4). EFR yields the set of strategy profiles

that survive iteratively eliminating never “sequential best replies” as follows. In the first round,

C1S3 and C2C4 are eliminated because S1S3 is better than C1S3 conditioning on h1; C2S4 is better

than C2C4 conditioning on h4. In the second round, player 2 thinks that upon reaching h2, player

1 should play C1C3 to survive the first round of elimination; thus, C2S4 is player 2’s only rational

play. In the meantime, player 1 thinks that upon reaching h3, player 2 should play C2S4 to survive

the first round of elimination; thus, C1C3 is no longer a best response conditioning on h3. Therefore,

C1C3, S2S4, and S2C4 are eliminated in this round and the elimination stops. That is, EFR defines

an elimination procedure as follows:

BR0 = {S1S3, S1C3, C1S3, C1C3} × {S2S4, S2C4, C2S4, C2C4};

BR1 = {S1S3, S1C3, C1C3} × {S2S4, S2C4, C2S4};

BR2 = {S1S3, S1C3} × {C2S4}.

Hence, EFR yields a solution set {S1S3, S1C3} × {C2S4} in which every strategy profile gives rise
to the same BI outcome: the terminal node through playing S1. That is, although EFR and BI

can prescribe very different strategies– namely, C2S4 and S2S4 for player 2– they lead to the same

outcome in this generic game (in which no same payoff is assigned to two distinct terminal nodes

for any player). Note that the elimination procedure involves only a dominance relation between

pure strategies conditioning on reachable information sets. We show that in a broad domain of

admissible “constantly monotone” preferences, EFR yields the same outcome as EFR under the

SEU model in perfect-information games without relevant ties (see Theorem 1).

5



Now consider the CM model that consists of all constantly monotone preferences. The constant

monotonicity of preferences is a rather weak form of monotonicity: It requires that one strategy be

preferred to another strategy if (i) the two strategies give rise to constant payoffs and (ii) the former

payoff is higher than the latter. Note that C1S3 is not a constant-payoff strategy because it may

yield different payoffs, 1 or 2, for player 1. The strategy C1S3 is not constant-strategy dominated

by S1S3; thus it cannot be eliminated in the first round. However, C2C4, C1C3 and C1S3 can be

consecutively eliminated under constantly monotone preferences (e.g., C2C4 is constant-strategy

dominated by C2S4 conditioning on h4). That is, EFR under the CM model coincides with a

backward iterated dominance procedure. Consequently, under such a rich model of preference,

EFR yields the set {S1S3, S1C3} × {S2S4, S2C4}, which is consistent with BI in terms of “plan of
action.”We show that in the CM model, EFR gives rise to the unique BI plan of action for all

players in a perfect-information game without ties in the sense of Heifetz and Perea (2015) (see

Theorem 2). This example also shows that the “obviously dominant”preference model of Li (2017)

is not rich enough for the “strategic” equivalence between EFR and BI. Under such a preference

model, EFR yields the same solution set as the SEU model; hence EFR and BI prescribe different

strategies for player 2 in this example.

3 Analytical framework

Let Ω be a (finite) set of states and let F(Ω) denote the set of all acts f : Ω→ R. A preference �
on Ω is a binary relation over F(Ω). For acts f and g in F(Ω), f � g means f is weakly preferred
to g; f � g means f is preferred to g. An event is a subset of states; let

ΣΩ ≡ {E : ∅ 6= E ⊆ Ω}

denote the collection of all nonempty events.2 Given any event E ∈ ΣΩ, let P(Ω|E) denote the set

of conditional preferences for which the complement of E is null in the sense of Savage (1954)– i.e.,

any two acts that yield the same outcomes for each state in E are ranked as being indifferent. That

is, P(Ω|E) is the set of preferences that “believe”E (cf., e.g., Morris (1996); Epstein and Wang

(1996); and Epstein (1997)); it thus satisfies consequentialism, which requires that conditional

preferences should not depend on an event’s not occurring.

2To deal with very general preferences, we consider a comprehensive analytical framework in which ℘ ∈ Pi (·) is
defined on conditioning events in ΣΩ; this framework is in the spirit of Myerson’s (1986) definition of “conditional
probability systems” on finite set Ω. In a measure-theoretic framework, the analytical framework can be simplified
by defining ℘ =

(
�S−i(h)

)
h∈Hi

exclusively for a sigma-algebra that represents player i’s information structure as a
natural class of observable events that represents player i’s information structure in game Γ.
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3.1 (Conditional) constantly monotone preferences: CPF

Consider an event E ∈ ΣΩ. Let rE ∈ F(Ω) denote the constant act conditioning on E such that

rE(ω) = r ∀ω ∈ E (where r ∈ R).

Definition 1. A preference � in P(Ω|E) is constantly monotone (CM) if for all acts rE , r′E ∈
F(Ω), rE � r′E whenever r > r′.

The constant monotonicity condition is rather weak: It only requires that the (conditional)

preference orderings over (conditional) constant acts be consistent with the natural order on real

numbers. Obviously, a CM preference is not required to be complete and transitive; it might have no

utility function representation. Many preferences discussed in the literature satisfy this condition,

including but not limited to subjective expected utility, ordinal expected utility, maxmin expected

utility, Choquet expected utility, regular preferences, and the smooth ambiguity decision model.

Throughout the paper, we restrict attention to the domain of constantly monotone preferences. Let

PCM (·) ≡ ×E∈ΣΩ
PCM(Ω|E),

where PCM(Ω|E) denotes the admissible set of all CM preferences. We call ℘ =
(
�℘E
)
E∈ΣΩ

in

PCM (·) a conditional preference family (CPF).

Remark 1. A CPF specifies a family of conditional preferences in every hypothetical event. Because

we do not impose the requirement of dynamic consistency in our analytical framework, the notion

of a CPF can be used to represent any arbitrary family of dynamically (in)consistent preferences

(cf. Subsection 4.3). The notion of CPF can be viewed as a natural generalization of a “conditional

probability system” (CPS) (Myerson (1986)) or “lexicographic conditional probability system”

(LCPS) (Blume et al. (1991)). In the Bayesian framework in which players’ payoffs or vNM

indexes in games are fixed and common knowledge, a CPF can be used to represent an array of

conditional probability measures defined on all conditioning events; for instance,

1. a plain and simple CPF is just a CPF belief with no restriction of an updating rule;

2. a fully Bayesian consistent CPF/CPS belief is required to satisfy Bayes’rule for all condi-

tioning events (see, e.g., Myerson (1986)).3

3A Bayesian-consistent CPF belief is required to satisfy Bayes’rule only for all non-savage-null conditioning events
(see, e.g., Ghirardato (2002)).
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3.2 Extensive games with perfect information

We focus on extensive games with perfect information and without chance moves. Consider a

(finite) extensive game with perfect information:

Γ = (N,H,Z, {Ah}h∈H , {ui}i∈N ),

where

• N = {1, . . . , n} is a finite set of players (with typical player i ∈ N);

• H is a finite set of nodes (with an initial node h0 ∈ H). Let Hi ⊆ H denote the set of decision

nodes at which player i must make a choice;

• Z ⊆ H is the set of terminal nodes;

• Ah is a finite set of choices available at decision node h ∈ H\Z;

• ui : Z → R is player i’s payoff function that assigns a payoff ui (z) to each terminal node

z ∈ Z.

As usual, assume Γ are common knowledge. In what follows, we also assume players’payoffs as

vNM indices are common knowledge, unless explicitly stated otherwise (e.g., Section 5.1(i)).

A (pure) strategy of player i is defined as a mapping si : Hi → ∪h∈HiAh such that si (h) ∈ Ah
for all decision nodes h ∈ Hi. Denote by Si the set of player i’s strategies. Let S−i ≡ ×j 6=iSj
and S ≡ Si × S−i. For each strategy profile s ∈ S, a strategic-form payoff to player i is given by

ui (z (s)), where z (s) denotes the terminal node induced by s. The expected payoff for a mixed-

strategy profile is defined in the usual way.

We say game Γ is without relevant ties (Battigalli 1997) if for all i ∈ N , si, s′i ∈ Si and

s−i ∈ S−i,
z(si, s−i) 6= z(s′i, s−i)⇒ ui (z(si, s−i)) 6= ui

(
z(s′i, s−i)

)
,

that is, given opponents’ choice of strategy profile, if player i’s two strategies lead to different

terminal nodes, then player imust have different payoffs. In other words, for every player i’s decision

node h ∈ Hi and for every two distinct terminal nodes z, z′ ∈ Z following h (induced by player i’s
different strategies given the opponents’choice of strategy profile), we have that ui (z) 6= ui (z′).

Apparently, a game without relevant ties has a unique BI strategy profile. Throughout the paper,

we restrict attention to the generic class of perfect-information games without relevant ties.
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From a decision-theoretic perspective, each player i makes a decision in the face of opponents’

strategic uncertainty in Ω ≡ S−i; each strategy si ∈ Si induces an act in F (S−i) that satisfies

si(s−i) = ui(z(si, s−i)) for all s−i ∈ S−i.

Example 1 (The CM model). For all i ∈ N , nonempty E−i ⊆ S−i, player i’s preference �E−i
conditioning on E−i, we require that �E−i satisfy the constant monotonicity property:

∀si, s′i ∈ Si, si �E−i s′i if ui (z(si, s−i)) = r > r′ = ui
(
z(s′i, s−i)

)
, ∀s−i ∈ E−i.

In words, si constant-strategy dominates s′i conditioning on E−i if strategies si and s
′
i induce the

conditionally constant acts rE−i and r
′
E−i

(r > r′), respectively. Let PCMi (S−i|E−i) denote the set
of player i’s CM preferences conditioning on E−i and let

PCMi (·) ≡ ×E−i∈ΣS−i
PCMi (S−i|E−i) .

Define the CM preference model PCM (·) = ×i∈NPCMi (·).

Example 2 (The SEUModel). In the Bayesian framework, players are assumed to have a subjective

probabilistic belief over every uncertain prospect. Let

∆⊗ (S−i) ≡ ×E−i∈ΣS−i
∆ (S−i|E−i) ,

where ∆ (S−i|E−i) is the set of probability distributions on S−i conditioning on E−i, i.e., µ (E−i|E−i) =

1, ∀µ (·|E−i) ∈ ∆ (S−i|E−i). For all i ∈ N , si ∈ Si and E−i ∈ ΣS−i, denote conditional expectations

by

Eµ (ui (z (si, ·) |E−i)) ≡
∑

s−i∈S−iui (z (si, s−i))µ (s−i|E−i) .

Let uµi (si) ≡ (Eµ (ui (z (si, ·) |E−i)))E−i∈ΣS−i
denote the family of conditional expectations of si

under µ. We have two kinds of SEU models for game Γ as follows.

1. The SEU model (with a prior belief), denoted by PSEU(·):

PSEUi (·) =
{
uµi : µ ∈ ∆⊗ (S−i)

}
, ∀i ∈ N ,

where µ ∈ ∆⊗ (S−i) represents a CPF belief with no restriction of an updating rule.

2. The SEU model (with a CPS belief; cf., e.g., Myerson (1986)), denoted by PSEU∗(·):

PSEU∗i (·) = {uµi : µ ∈ ∆∗ (S−i)} , ∀i ∈ N ,
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where µ ∈ ∆∗ (S−i) is a CPS belief on S−i.

A model of preference (for game Γ) is defined by

P (·) = {Pi (·)}i∈N ,

where ∅ 6= Pi (·) ⊆ PCMi (·), ∀i ∈ N . The set Pi (·) is interpreted as the set of admissible CPFs
adopted by player i in game Γ. Note that ℘ ∈ Pi (·) must be an array of conditional CM preferences

in PCMi (·).4

Let h ∈ H and E ≡ Ei × E−i ⊆ S. Let E (h) denote the set of strategy profiles in E that

reach h; let

E−i (h) = {s−i ∈ E−i : (si, s−i) reaches h for some si ∈ Si} ,

that is, s−i ∈ E−i (h) represents a strategy profile in E−i that can reach h (through a strategy

si ∈ Si). We say “si can reach h via E−i”if si can reach h through a strategy profile s−i ∈ E−i.
For decision node h ∈ Hi, S−i (h) can be viewed as a strategic-form representation of player i’s

information structure at h.

4 EFR and BI under general preferences

4.1 EFR under general preferences: Definition

In the Bayesian framework, the behavioral assumption for EFR is that each player forms a consis-

tent probabilistic conjecture about opponents’behavior and then chooses a sequential best response

subject to this conjecture; cf. Battigalli (1997). We extend this idea to general preferences. Con-

sider an arbitrary preference model P(·) for game Γ. Let E = Ei × E−i ⊆ S. For player i ∈ N , a
strategy si ∈ Ei is a Pi-best reply on E if there exists a CPF ℘ ∈ Pi (·) such that for all h ∈ Hi, if

si can reach h via E−i, then s′i �
℘
E−i(h) si for all s

′
i ∈ Ei that can reach h via E−i. Let

BR(P, E) = ×i∈NBRi(Pi, E),

where BRi(Pi, E) denotes the set of all Pi-best replies on E for player i. We extend Pearce’s (1984)
notion of EFR to general preferences. The notion is defined by an iterative elimination of “inferior”

4Our approach is consistent with Epstein’s (1997, pp. 6-7) notion of a model of preference on a finite space
Ω: PREF3 in Epstein (1997) ensures that any preference on a nonempty E ⊆ Ω can be regarded as a conditional
preference on E.
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strategies– i.e., never Pi-best replies for each player i in game Γ.

Definition 2. The P-EFR procedure is defined as an elimination sequence {BRk(P, S)}k≥0 such

that BR0(P, S) ≡ S and BRk+1(P, S) = BR(P,BRk(P, S)) for all k ≥ 0. Let BR∞(P, S) ≡
∩k≥0BRk(P, S) denote the solution set of P-EFR strategy profiles.

In the Bayesian framework in which a player’s belief is represented by a probabilistic belief

about opponents’strategy profiles and satisfies the Bayesian updating rule in every contingency,

the definition of PSEU∗-EFR delivers a (correlated) version of Pearce’s EFR; in two-player games,
PSEU∗-EFR is consistent with Pearce’s EFR (using independent beliefs). Shimoji and Watson

(1998) show that Pearce’s notion of EFR is behaviorally irrelevant with respect to whether players

update their beliefs according to Bayes’ rule; thus PSEU-EFR and PSEU∗-EFR yield the same

solution set. For the sake of simplicity, we focus on an unconstrained SEU model PSEU (·) in which
players are not restricted to independent beliefs about opponents’strategies and the beliefs are not

required to satisfy the Bayesian updating rule upon arrival of new information– that is, each player

has a CPF belief in a game situation.

Remark 2. Epstein (1997) and Chen et al. (2016) study normal-form rationalizability in strategic

games with various modes of behavior; Definition 2 offers a definition of EFR in dynamic perfect-

information games under general preferences. Observe that the definition of BRi(Pi, E−i) requires
the adoption of an updated preference �℘E−i(h) (according to ℘ ∈ Pi (·)) at decision node h ∈ Hi

whenever E−i (h) = E−i ∩ S−i(h) 6= ∅. In other words, if E−i is not falsified at decision node h,
then player i must hold a “compatible”preference �℘E−i(h) that believes E−i. This compatibility

property is related to the probabilistic notion of “strong belief”in Battigalli and Siniscalchi (2002).

4.2 Main results

We can now present the central result of this paper– i.e., an outcome equivalence between BI and

EFR under general preferences, regardless of the elimination order of P-EFR.5

Theorem 1. Consider an arbitrary preference model P(·) for a (finite) perfect-information game
without relevant ties in Battigalli (1997). If PSEU (·) ⊆ P (·), then P-EFR yields a unique BI

5An elimination order of P-EFR is a more flexible form of elimination procedure that allows players to eliminate
some, but not necessarily all, “inferior” strategies in each round of elimination (see Definition 4 in the Appendix).
The P-EFR procedure in Definition 2 is a “fast”P-EFR elimination order.
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outcome (in terms of induced terminal node). Moreover, every elimination order of P-EFR yields
the same BI outcome.

Theorem 1 generalizes Battigalli’s (1997, Theorem 4) outcome equivalence for the SEU prefer-

ence model to a wide range of preference models. Our result asserts that in any arbitrary preference

model P (·) ⊇ PSEU (·), P-EFR must yield the unique BI outcome in a perfect-information game
without relevant ties. Theorem 1 thus offers an outcome-indistinguishability result for EFR: The

relaxation of the SEU model does not change the observed EFR play, and in that sense has no em-

pirical significance– e.g., by weakening knowledge of cardinal preferences in the SEU model, EFR

under the ordinal expected utility model (Börgers 1993) cannot affect the BI outcome in generic

games. The outline of the proof of Theorem 1 goes as follows.

(1) For any preference model P (·) ⊇ PSEU (·), every never Pi-best reply is a never PSEUi -best

reply. Therefore, any elimination order of P-EFR can be regarded as the foremost segment
of an elimination order of PSEU-EFR– that is, the first few steps of an elimination order of
PSEU-EFR. Because (i) Chen and Micali (2013) show that every elimination order of PSEU-
EFR leads to the same outcome set of terminal nodes and (ii) the BI procedure is a possible

elimination order of PSEU-EFR in a generic game, every elimination order of P-EFR retains
the BI outcome in a generic game.

(2) Any elimination order of P-EFR yields a unique outcome in a generic game (see Lemma 2 in
the Appendix). Suppose, on the contrary, that an elimination order of P-EFR yields different
terminal nodes. Then, there exists a “last”player such that no following players can induce

different terminal nodes by their P-EFR strategies. Hence, by the constant monotonicity

property of P (·), the last player should unambiguously single out his optimal (constant)
action under the preference model P (·) and could not induce different terminal nodes in a
generic game. By (1), every elimination order of P-EFR must yield the unique BI outcome
in a generic game.

The example in Figure 2 shows that in a nongeneric game with relevant ties, EFR might be

outcome-distinguishable under general preferences.6

6Battigalli (1997) uses the same extensive-form structure, without relevant ties, to demonstrate that iterated
deletion of inferior strategies does not coincide with iterated deletion of dominated strategies. We here use this
extensive-form structure with relevant ties to show that different preference models might generate different observed
outcomes for the EFR solution concept, although it never happens in a generic case.
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Fig. 2. EFR is outcome-distinguishable in a nongeneric
game with relevant ties.

In this game, player 3 has relevant ties at his two decision nodes; players 1 and 2 have no rele-

vant ties. The PSEU-EFR procedure coincides with iterated elimination of (conditionally) strictly
dominated strategies in which player 1’s strategy CLL′ is eliminated in the first round; player 2’s

strategy l is eliminated in the second round. Note that player 1’s strategy CLL′ is strictly domi-

nated by a pure strategy S; player 2’s strategy l is strictly dominated only by a mixed strategy (e.g.,

0.5s+0.5r), conditioning on player 2’s decision node, in the reduced game after performing the first

round of elimination. Consider a preference model PSD (·) in which PSDi (·) contains all “strong
dominance” preferences, which are a strong form of strict dominance, by using a pure-strategy

dominator, rather than a mixed-strategy dominator (cf. Subsection 5.3). The PSD -EFR procedure
stops after the one-round elimination of strict dominated strategies because player 2’s strategy l is

not (conditionally) strongly dominated by any pure strategy. Consequently, PSD -EFR is outcome-
distinguishable from PSEU-EFR in this nongeneric game with relevant ties. (See Appendix+ for

more discussion of EFR under non-Bayesian beliefs preferences in this example.)

Theorem 1 shows an outcome equivalence in the case of generic games. As demonstrated by

the illustrative example in Section 2, a PSEU-EFR strategy profile (S1C3, C2S4) could be quite

different from the unique BI strategy profile (S1S3, S2S4); thus, P-EFR is strategic distinguishable
from PSEU-EFR in terms of complete plan of action. Notably, for player 2, PSEU -EFR strategy

C2S4 is different from the BI strategy S2S4 according to the notion of “plan of action,” because
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they specify distinct actions at player 2’s first decision node. (A plan of action for a player is part

of his strategy that specifies the player’s actions only at decision nodes that are not precluded by

his plan; see Rubinstein (1991).) However, if we consider the rich model PCM (·), this example
shows that PCM -EFR must yield the same BI plan of action for all players. More specifically, in
this example PCM -EFR defines a (unique) backward iterated dominance procedure:

BR0(PCM , S) = {S1S3, S1C3, C1S3, C1C3} × {S2S4, S2C4, C2S4, C2C4};

BR1(PCM , S) = {S1S3, S1C3, C1S3, C1C3} × {S2S4, S2C4, C2S4};

BR2(PCM , S) = {S1S3, S1C3, C1S3} × {S2S4, S2C4, C2S4};

BR3(PCM , S) = {S1S3, S1C3, C1S3} × {S2S4, S2C4};

BR4(PCM , S) = {S1S3, S1C3} × {S2S4, S2C4} = BR∞(PCM , S).

Consequently, for every player i = 1, 2, PCM -EFR strategies generate a unique BI plan of action
(Si). Theorem 2 below shows that PCM -EFR gives rise to a unique BI plan of action for all players
in generic games without relevant ties in the sense of Heifetz and Perea (2015).

Theorem 2. Suppose Γ is a (finite) perfect-information game without relevant ties in the sense of

Heifetz and Perea (2015)– i.e., for every player i’s decision node h ∈ Hi and for every two distinct

terminal nodes z, z′ ∈ Z following h, we have ui (z) 6= ui (z′). Then PCM-EFR yields the unique BI
plan of action for all players. Moreover, PCM-EFR is an order-independent elimination procedure
in terms of plan of action.

Theorem 2 asserts that PCM -EFR must generically lead to the BI plan of action for all players.
That is, by allowing for more admissible preferences in generic games, the notion of EFR provides

a justification for playing BI strategies through the lens of a plan of action. The concept of EFR

captures the spirit of forward-induction reasoning: Players try to draw inferences about future

play from past strategic behavior; they should not simply regard surprise events as “mistakes”or

“trembles.”In the literature, Aumann (1995) shows that “common knowledge of rationality”yields

the unique BI strategy profile in a generic game; Perea (2014, Theorem 6) shows that “common

belief in future rationality”implies the unique BI strategy profile.

It is worth noting that the notions of Aumann’s rationality and Perea’s future rationality rely

crucially on the assumption that players are completely forward looking– i.e., they only reason
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about opponents’behavior in the future of the game, and take opponents’past choices for granted

without drawing any conclusion from their past behavior; cf. Stalnaker (1998) and Asheim (2002)

for related discussion. The crux of their characterization results for BI is that their definitions

of “rationality” rule out the forward-induction pattern of strategic reasoning in game situations.

To avoid grappling with the conceptual “conundrum” of such an approach, Arieli and Aumann

(2015) make use of the notion of “strong belief”that captures a form of forward inferences. Arieli

and Aumann show that the logic of BI applies only to “simple” generic games in which each

player moves just once; moreover, “common strong belief of rationality” implies the unique BI

strategy profile in a generic game, given that a player’s agents act independently, rendering forward

inferences invalid. Remarkably, Reny (1992, Proposition 3) and Battigalli (1997, Theorem 4) show

that forward-induction and backward-induction reasoning can be reconciled in generic games, in

terms of the outcome of play. Theorem 2 extends this line of outcome equivalence to a plan-of-

action equivalence by allowing for more flexible preferences. In this respect, our equivalence result

offers an additional justification for BI in generic games, in which players can make both kinds

of forward/explanatory and backward/predictive inferences. The typologies of players’preferences

can provide an interesting explanation of similarities and differences between forward-induction and

backward-induction strategic behavior.

Perea (2014, Theorem 6.1) shows that the order-independent “backward dominance procedure”

yields the BI strategies for every player in an arbitrary perfect-information game without relevant

ties. Our Theorem 2 implies that such an equivalence result still holds true by accommodating

forward-induction reasoning in the rich domain of CM preferences. That is, forward induction has

no bite for the CM preference model.

Remark 3. Battigalli (1997) introduces the notion of “no relevant ties.”This notion reflects the

idea that whenever a player’s choice can affect the outcome (given opponents’ strategies), this

also affects the player’s own payoff. According to Battigalli’s definition of no relevant ties, if

opponents’strategies can affect the outcome (given a player’s choice), then the player’s payoff ties

are deemed “irrelevant”– that is, they could not affect PSEU -EFR strategic behavior under this

circumstance. However, such payoff ties can be “relevant” to PCM -EFR strategic behavior when
players are allowed to have constantly monotone preferences. We thereby adopt a stronger form of

“no relevant ties” in Heifetz and Perea (2015). That is, whenever a player’s choice can affect the

outcome (possibly by means of opponents’strategies), it also affect the player’s own payoffs– i.e.,

players are required to have no relevant payoff ties in this sense. Obviously, if a game is without

relevant ties in the sense of Heifetz and Perea, then the game is also without relevant ties in the
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sense of Battigalli. The reverse is not necessarily true: As demonstrated by the example in Figure

3, a game without relevant ties is in the sense of Battigalli, but not in the sense of Heifetz and

Perea.

Fig. 3. A variation of the game in Figure 1.

In this game, player 0’s payoff ties at the last five terminal nodes are “irrelevant” in the sense of

Battigalli (1997) because these terminal nodes are not essentially affected by player 0’s own choice

(although they are affected by opponents’ strategies). However, such payoff ties do matter for

PCM -EFR strategic behavior. In this game, S0 constant-dominates C0. Therefore, h1 can never be

reached after removing C0 in the first round of the PCM -EFR elimination procedure. Consequently,
C1C3 becomes a PCM -EFR strategy with such payoff ties. In contrast, if there are no such payoff
ties through perturbing player 0’s payoffs, then C0 is not constant-dominated and thus it cannot

be removed in the first round of the PCM -EFR elimination procedure. As a consequence, C1C3

is no longer a PCM -EFR strategy without such payoff ties. Heifetz and Perea’s (2015) definition
nicely captures this type of “relevant”ties for PCM -EFR strategic behavior.7 This example shows
that in a perfect-information game without relevant ties in the sense of Heifetz and Perea, PCM -
EFR defines a (unique) backward iterated dominance procedure; PCM -EFR is consistent with BI
in terms of plan of action.

How robust are our equivalence results in Theorems 1 and 2 if players’payoffs are allowed to be

slightly perturbed? While the notion of “no relevant ties”is preserved under payoff perturbations,

the EFR solution set could be sensitive to small payoff perturbations in the broad domain of

constantly monotone preferences (cf. also Footnote 7). Corollary 1 below asserts that Theorems 1

and 2 are robust to small perturbations of payoffs. We say Γε is an ε-perturbation of game Γ if,
7This example also shows that PCM -EFR could be sensitive to small payoff perturbations in a perfect-information

game without relevant ties in the sense of Battigalli: By appropriately perturbing player 0’s payoffs in Figure 3, C1C3

might no longer be a PCM -EFR strategy. Heifetz and Perea’s (2015) definition of “relevant” ties rules out such an
undesirable incident (see Corollary 1).
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for every player i ∈ N , payoff function ui in Γ is replaced by a slightly perturbed payoff function

uεi– i.e., sup norm ‖uεi − ui‖∞ ≤ ε, where ui = (ui (z))z∈Z denotes i’s payoff vector and ε > 0 is

suffi ciently small.

Corollary 1. (i) Suppose that Γ is a (finite) perfect-information game without relevant ties in

the sense of Battigalli (1997); Γε is an ε-perturbation of Γ; and P(·) is an arbitrary preference
model for Γε such that P (·) ⊇ PSEU (·). Then, P-EFR for Γε yields the unique BI outcome in Γ,

regardless of the elimination order of P-EFR. (ii) Suppose that Γ is a (finite) perfect-information

game without relevant ties in the sense of Heifetz and Perea (2015); and Γε is an ε-perturbation of

Γ. Then, PCM-EFR for Γε yields the unique BI plan of action for all players in Γ.

5 Preference models: Examples

In this section, we present a number of notable models of preference for a (finite) extensive game Γ

with perfect information. We consider three categories of preference models: (1) preference models

(with Bayesian beliefs), (2) preference models (with non-Bayesian beliefs), and (3) dominance

models (with no beliefs). It is easy to see that these preference models reside in the domain of CM

preferences (i.e., P (·) ⊆ PCM (·)).

5.1 Preference models (with Bayesian beliefs)

(i) The Ordinal Expected Utility (OEU) Model. In the SEU model, we implicitly assume that

players’payoffs as vNM indices in Γ are common knowledge. Börgers (1993) relaxes this assumption

by assuming that only preferences, rather than vNM indices, over outcomes of the game are common

knowledge. By introducing (strictly increasing) vNM index v : R→ R, we can obtain OEU models
for game Γ in a similar way. For any µ ∈ ∆⊗ (S−i) (where ∆⊗ (S−i) is the set of CPF beliefs on

S−i), let

uµ,vi (si) ≡ (Eµ,v (ui (z (si, ·) |E−i)))E−i∈ΣS−i
, ∀si ∈ Si

where Eµ,v (ui (z (si, ·) |E−i)) ≡
∑

s−i∈S−iv (ui (z (si, s−i)))µ (s−i|E−i). The OEU model POEU(·)
can be defined as:

POEUi (·) =
{
uµ,vi : µ ∈ ∆⊗ (S−i) and v is a (strictly increasing) vN-M index

}
, ∀i ∈ N .

Börgers shows that the POEU-best reply can be characterized by a notion of “pure-strategy domi-
nance.”
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(ii) The Probability Sophisticated (PS) Model. By dropping the assumption of an expected

utility functional form but keeping the assumption that players’preferences are based on proba-

bilistic beliefs, Machina and Schmeidler (1992) introduce the probability sophisticated model. Let

Vi (·) denote Machina and Schmeidler’s (non-)expected utility preference functional on distributions
on the payoff-outcome set ui (Z). Let

S−i (ui (z)) ≡ {s−i ∈ S−i : ui (z (si, s−i)) = ui (z)} , ∀z ∈ Z.

For any µ ∈ ∆⊗ (S−i), let

V µ
i (si) ≡

(
Vi
(
pµ(s−i|E−i)

))
E−i∈ΣS−i

, ∀si ∈ Si,

where pµ(s−i|E−i) (ui (z)) = µ (S−i (ui (z)) |E−i) ∀z ∈ Z. We can define the PS model PPS(·) as
follows:

PPSi (·) =
{
V µ
i : µ ∈ ∆⊗ (S−i)

}
, ∀i ∈ N .

5.2 Preference models (with non-Bayesian beliefs)

The Ellsberg paradox and related experimental evidence demonstrate that a decision maker may dis-

play an aversion to uncertainty or ambiguity, and thereby motivate generalizations of the Bayesian

models. Unlike in the case of Bayesian models, players may not have a subjective probabilistic

belief over every uncertain prospect. Here we consider three special classes of preference models:

Machina and Schmeidler’s (1992) maxmin expected utility with multiple-priors beliefs, Epstein

and Wang’s (1996) regular preferences, and Klibanoff et al.’s (2005) smooth ambiguity model by

adopting a second-order probabilistic belief over uncertain prior beliefs.

(i) The Maxmin Expected Utility (MEU) Model. We can define MEU models with a multiple

prior set of beliefs under different updating rules for game Γ as follows. For (nonempty) compact

subset ∆ ⊆ ∆⊗ (S−i), let

u∆
i (si) ≡

(
min
µ∈∆

Eµ (ui (z (si, ·) |E−i))
)
E−i∈ΣS−i

, ∀si ∈ Si.

1. The MEU model (with multiple prior beliefs), denoted by PMEU(·):

PMEUi (·) =
{
u∆
i : nonempty, convex and compact ∆ ⊆ ∆⊗ (S−i)

}
, ∀i ∈ N .
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2. The MEU model (with multiple prior CPS beliefs in Ahn (2016)), denoted by PMEU∗(·):

PMEU∗i (·) =
{
u∆
i : nonempty, convex and compact ∆ ⊆ ∆∗ (S−i)

}
, ∀i ∈ N ,

where ∆∗ (S−i) ⊆ ∆⊗ (S−i) is the set of CPS beliefs on S−i.

(ii) The Regular Preference (RP) Model. Epstein and Wang (1996) defined a class of “regular”

preferences that can be represented by utility functions; see also Epstein (1997). Regular preferences

accommodate nonexpected utility models, e.g., Choquet expected utility. Let UR (·|E−i) be the set
of regular preferences on S−i that know E−i. In particular, uR (·|E−i) ∈ UR (·|E−i) satisfies:8

1. (Conditional) Certainty Equivalence: uR (si|E−i) = r if ui (z(si, s−i)) = r, ∀s−i ∈ E−i.

2. (Conditional) Weak Monotonicity: uR (si|E−i) ≥ uR (s′i|E−i) if ui (z(si, s−i)) ≥ ui (z(s′i, s−i)),

∀s−i ∈ E−i.

We can define a regular preference model PRP (·) for game Γ as follows:

PRPi (·) = ×E−i∈ΣS−i
UR (·|E−i) , ∀i ∈ N .

(iii) The Smooth Ambiguity (SA) Model. According to Klibanoff et al. (2005), players have

a second-order probability over their possible prior beliefs about opponents’ strategies. Let φ :

R → R be an increasing function that captures ambiguity attitudes, and let µ be a second-order
probabilistic belief over ∆⊗ (S−i). The conditional utility on nonempty subset E−i is defined as

uφ,µi (si|E−i) =

∫
∆⊗(S−i)

φ

 ∑
s−i∈S−i

ui (z (si, s−i))π (s−i)

 dµE−i , ∀si ∈ Si,

where µE−i is the marginal probability measure over ∆ (S−i|E−i). We can define an SA model

PSA(·) as follows:

PSAi (·) =
{
uφ,µi : increasing function φ : R→ R and µ ∈ ∆

(
∆⊗ (S−i)

)}
, ∀i ∈ N ,

where uφ,µi (si) ≡
(
uφ,µi (si|E−i)

)
E−i∈ΣS−i

, ∀si ∈ Si.

8 Inner/outer regularity in Epstein and Wang (1996) are both satisfied, since S−i is finite.
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5.3 Dominance models (with no beliefs)

In the CM model PCM (·), preferences are defined by a straightforward (conditional) constant-
strategy dominance without being referred to beliefs. We note several noteworthy models of

preference by simple (conditional) dominance relations. Consider a game Γ. Let i ∈ N , and let

E−i = ×j 6=iEj ⊆ S−i.

We say si ∈ Ei is conditionally (strictly) dominated on E−i if there exists σi ∈ ∆(Ei) such

that

ui(z(si, s−i)) < ui(z(σi, s−i)), ∀s−i ∈ E−i;

that is, mixed strategy σi strictly dominates si conditioning on E−i. Define a (strict) dominance

model PD (·): For each player i ∈ N , PDi (·) is the set of player i’s preferences defined by conditional
dominance. Similarly, we can easily define a weak dominance (WD) model PWD (·) by replacing it
with a weak version of conditional dominance: That is, si ∈ Ei is conditionally weakly dominated
on E−i if there exists σi ∈ ∆(Ei) such that

ui(z(si, s−i)) ≤ ui(z(σi, s−i)),∀s−i ∈ E−i

and the inequality is strict for some s−i ∈ E−i; that is, mixed strategy σi weakly dominates si

conditioning on E−i.

The definition of conditional dominance allows the use of mixed strategies as dominators. That

is, it is possible that a strategy is conditionally dominated only by a mixed strategy. Based on this

consideration, we have several variants of conditional dominance models as follows. We say si ∈ Ei
is conditionally strongly dominated on E−i if there exists s′i ∈ Ei such that

ui(z(si, s−i)) < ui(z(s
′
i, s−i)), ∀s−i ∈ E−i;

that is, strategy s′i strictly dominates si conditioning on E−i. Define a strong dominance (SD)

model PSD (·): For each player i ∈ N , PSDi (·) is the set of player i’s preferences defined by the
conditional strong dominance. The SD model is related to Epstein’s (1997) monotonic utility model

and Chen and Luo’s (2012) strongly monotonic reference model.

We say si ∈ Ei is conditionally pure-strategy dominated on E−i in the sense of Börgers (1993)
if for every F−i ⊆ E−i, there exists s′i ∈ Ei such that

ui(z(si, s−i)) ≤ ui(z(s′i, s−i)), ∀s−i ∈ F−i,

20



and the inequality is strict for some s−i ∈ F−i; that is, s′i weakly dominates si conditioning on F−i.
Define a pure-strategy dominance (PSD) model PPSD (·): For each player i ∈ N , PPSDi (·) is the set
of player i’s preferences defined by the conditional pure-strategy dominance. Börgers (1993) shows

an equivalence between PPSD and POEU .

Li (2017) introduces the notion of “obviously dominant strategy”: For any deviation, at any

decision node where both strategies first diverge, the best outcome under the deviation is no better

than the worst outcome under the dominant strategy. In the same vein, we define a weak form of

obvious dominance for comparing with pure strategies in game Γ. Formally, si ∈ Ei is said to be
conditionally obviously dominated on E−i if there exists s′i ∈ Ei such that

max
s−i∈E−i

ui (z(si, s−i)) ≤ min
s−i∈E−i

ui
(
z(s′i, s−i)

)
and ui (z(si, s−i)) < ui

(
z(s′i, s−i)

)
for some s−i ∈ E−i.

That is, the obvious dominance relation requires that conditioning on E−i, the best payoff outcome

under the obviously dominated strategy (si) is no better than the worst payoff outcome under the

obvious dominator (s′i). (We note that a strategy with non-constant payoffs can never be constantly

monotone dominated, even if this strategy is strictly dominated and obviously dominated.) Define

an obvious dominance (OD) model POD (·): For each player i ∈ N , PODi (·) is the set of player i’s
preferences defined by the conditional obvious dominance.

For all dominance models P (·), the notion of Pi-best reply can be presented by the dominance
in Pi (·) conditioning on decision nodes h ∈ Hi. Consider the pure-strategy dominance model

PPSD (·), for example. A strategy si ∈ Ei is a never PPSDi -best reply on E iff there exists h ∈ Hi

such that for each F−i (h) ⊆ E−i (h) there is s′i ∈ Ei such that9

(1) si and s′i can both reach h via E−i, and

(2) ui(z(si, s−i)) ≤ ui(z(s
′
i, s−i)), ∀s−i ∈ F−i(h), and the inequality is strict for some s−i ∈

F−i(h).

6 Concluding remarks

The Ellsberg paradox and vast experimental evidence demonstrate that a decision maker may vio-

late some basic tenets of the SEU theory and thereby motivate generalizations of the SEU model.

Various preference models have been developed for the purpose of the descriptive validity of the

actual behavior. In this paper, we study the solution concept of EFR under a fairly broad range of
9See Guarino (2020) for extensive discussion of conditional pure-strategy dominance.
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general preferences– namely, constantly monotone (CM) preferences, in a generic class of perfect-

information games with relevant ties. More specifically, in generic games, we have shown that

any arbitrary preference model that admits SEU preferences and satisfies the constant monotonic-

ity property must yield a unique BI outcome, even though the EFR strategy profile and the BI

strategy profile might be distinct (Theorem 1). Our result extends Battigalli’s (1997) outcome

equivalence between BI and EFR to a wide variety of preference models. It provides an outcome-

indistinguishability result for EFR: Relaxation of the SEU model does not change the observed

EFR outcome, and thus has no empirical significance in generic games. Moreover, our outcome-

equivalence result is robust against any order of EFR elimination procedure. As a by-product,

Theorem 1 extends Chen and Micali’s (2013) outcome order independence result to a variety of

preference models in the class of perfect-information games with relevant ties. In a rich model that

contains all CM preferences, we have shown that EFR gives rise to the unique BI plan of action

for all players in a generic game without relevant ties in the sense of Heifetz and Perea (2015)

(Theorem 2).

An important feature of this paper is that the framework allows players to have broadly gen-

eral preferences that include SEU preferences as a special case. In light of our analysis, we allow

admissible preferences to reside in a broad domain of CM preferences; in particular, we do not re-

quire that preferences have utility function representations or that they are dynamically consistent

in dynamic strategic contexts. Our analysis is applicable to various preference models discussed in

the literature; e.g., the probabilistic sophistication model, ordinal expected utility model, maxmin

expected utility model, Choquet expected utility model, smooth ambiguity model, lexicographic

preference model, and obvious dominance preference model. Several papers discuss observable im-

plications for rationalizability in strategic games under various models of preference. For example,

in finite strategic games, Epstein (1997, pp. 12-13) points out that rationalizable strategic behav-

ior in the ordinal expected utility model (Börgers 1993) is observationally indistinguishable from

that in the probabilistic sophistication model (Machina and Schmeidler 1992). Lo (2000) obtains

an indistinguishability result for all models of preference that satisfy Savage’s axiom P3. Chen

and Luo (2012) show an indistinguishability result for compact Hausdoff strategic games under

“concave-like”condition. A key difference is that this paper studies the solution concept of EFR

in dynamic games, whereas the aforementioned papers focus exclusively on the solution concept of

normal-form rationalizability in static games. Indistinguishability in static environments relies on a

“monotonicity”property of normal-form rationalizability: The more inclusive a preference model,

the more inclusive the rationalizable solution set w.r.t. the preference model. By contrast, the

illustrative example in Figure 1 shows the failure of the monotonicity property for EFR in dynamic

environments; thus the argument for the outcome-indistinguishability of EFR differs substantially

from that for normal-form rationalizability.
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Our paper is also related to the literature on the robustness of rationalizability. In the context

of strategic games, Hu (2007) shows that the rationalizable set is robust to small deviations from

rationality– i.e., the strategies caused by “common p-belief of rationality” are close to the ratio-

nalizable set when p→ 1. Ely (2005) offers a robustness result of rationalizable sets against small

uncertainty of payoffs in incomplete information games. Bergemann and Morris (2007, 2009) and

Bergemann et al. (2017) study the “(rationalizable) strategic distinguishability”in static environ-

ments in which payoff-relevant types may not be observable. In this respect, this paper offers a

(rationalizable) outcome indistinguishability result for general preferences in dynamic environments

with perfect information.

7 Appendix: Proofs

To prove our results, we need to introduce some notation and definitions. Consider a (finite) perfect

information game Γ with a unique BI strategy profile sBI . We say the degree of node h ∈ H is k if

the longest path from h to some terminal node consists of k actions. (The initial node h0 has the

highest degree KΓ; a terminal node has degree 0.) Let Hk ⊆ H be the set of all nodes that have

degree k. Let Hi(si) denote the set of i’s reachable nodes via si ∈ Si; i.e.,

Hi(si) = {h ∈ Hi : (si, s−i) ∈ S(h) for some s−i ∈ S−i}.

We define a natural procedure to find out BI strategies; cf. Osborne and Rubinstein (1995, Section

6.6).

Definition 3. The backward iterated dominance procedure (BIDP) is defined as {BIk}KΓ
k=0 such

that BI0 ≡ S and for k = 1, 2, . . . ,KΓ,

BIk ≡ ×i∈N
{
si ∈ BIk−1

i : si(h) = sBIi (h), ∀h ∈ Hk ∩Hi(si)
}
.

Obviously, BIDP provides an algorithm to determine the unique BI plan of action (induced

by sBI) for all players in Γ. That is, for all si ∈ BIKΓ
i , si (h) = sBIi (h), ∀h ∈ Hi(s

BI
i ); hence,

z (s) = z
(
sBI
)
, ∀s ∈ BIKΓ .

The notion of P-EFR in Definition 2 implicitly requires that all “inferior”strategies be elimi-
nated in every round of elimination. We can consider a more flexible form of elimination procedure

that allows us to eliminate some inferior strategies, rather than all inferior ones, in each round of

elimination.
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Definition 4. (Luo, Qian and Qu (2020)) An elimination order of P-EFR is defined as a reduction
sequence of product sets of strategies {Dk}k≥0 in S such that (i) D0 = S; (ii) for all k ≥ 0,

BR(P, Dk) ⊆ Dk+1 ⊆ Dk; (iii) D∞ ≡ ∩k≥0D
k = BR(P, D∞).

Because Γ is finite, w.l.o.g., we only consider elimination orders of P-EFR that stop after fi-
nitely many rounds– i.e., {Dk}k≥0 in Definition 4 satisfies a “stopping”property DK = BR(P, DK)

for some positive integer K. We say P-EFR is outcome-order independent if every elimination or-
der of P-EFR yields the same outcome set of terminal nodes. To prove Theorem 1, we need the

following Lemmas 1-2.

Lemma 1. (Chen and Micali (2013)) PSEU-EFR is outcome-order independent.

Lemma 2. Suppose Γ is a (finite) perfect-information game without relevant ties. Let {Dk}k≥0 be

an elimination order of P-EFR. Then, D∞ yields a unique terminal node if D∞ 6= ∅.

Proof of Lemma 2. Suppose, on the contrary, that D∞ yields multiple terminal nodes. Let

H∞ ≡ {h ∈ H\Z : D∞ (h) yields multiple terminal nodes}. Then h0 ∈ H∞ 6= ∅. Let h be a

“minimal” element in H∞. That is, (i) D∞ (h) yields multiple terminal nodes and (ii) D∞ (h)

yields a unique terminal node for all nodes h that follow h. Let s1, s2 ∈ D∞(h) reach terminal

nodes z1 6= z2, respectively. Assume h ∈ Hi. Let h1 and h2 be two nodes that immediately

follow from actions s1
i (h) and s2

i (h), respectively. Now consider an arbitrary s−i ∈ D∞−i(h). Thus,

(s1
i , s−i) ∈ D∞(h1). By (ii), z(s1

i , s−i) = z(s1) = z1. Similarly, z(s2
i , s−i) = z2. Therefore, s1

i and s
2
i

are two constant acts conditioning on D∞−i (h). Since the game has no relevant ties, ui(z1) 6= ui(z2).

Assume ui(z1) < ui(z2). By constant monotonicity, s2
i �

℘
D∞−i(h) s1

i for all ℘ ∈ Pi (·). Hence,

s1
i ∈ D∞i \BRi(Pi, D∞), contradicting D∞ = BR(P, D∞). �

Proof of Theorem 1. Since Γ is a (finite) perfect-information game without relevant ties, Γ must

have a unique BI strategy profile sBI . Let zBI = z(sBI) denote the BI outcome in Γ. Because

BIDP is an elimination order of PSEU-EFR, by Lemma 1, all elimination orders of PSEU-EFR yield
zBI . Now consider an arbitrary elimination order of P-EFR {Dk}k≥0 such that DK = BR(P, DK)

for some positive integer K. Because P (·) ⊇ PSEU (·), every never Pi-best reply on E is a never

PSEUi -best reply on E for every player i in Γ. Therefore, we can construct an elimination order of

PSEU -EFR {D̃k}k≥0 such that

D̃k =

{
Dk, if k ≤ K
BR(PSEU , D̃k−1), if k > K

.

That is, {Dk}Kk≥0 is the first few steps in an elimination order of PSEU-EFR {D̃k}k≥0. Again by

Lemma 1, zBI ∈ z(DK). By Lemma 2, z(D∞) = z(DK) is a singleton and hence z(D∞) = zBI . �
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To prove Theorem 2, we need the following Lemmas 3-4. Lemma 3 provides a characterization

of the PCMi -best replies by a notion of conditional constant-strategy dominance.

Lemma 3. Let Γ be a (finite) perfect-information game and E = Ei×E−i ⊆ S. si /∈ BRi(PCMi , E)

if and only if si is conditionally constantly dominated by some s′i ∈ Ei at some h ∈ Hi on E in the

following sense: h is reached by both si and s′i via E−i such that

ui (z(si, s−i)) = r < r′ = ui
(
z(s′i, s−i)

)
, ∀s−i ∈ E−i (h) .

Proof of Lemma 3. The “if”part: Suppose si is conditionally constantly dominated by s′i ∈ Ei at
h ∈ Hi on E. By constant monotonicity, s′i �

℘
E−i(h) si for all ℘ ∈ P

CM
i (·). Thus, si /∈ BRi(PCMi , E).

The “only if” part: Suppose si is not conditionally constantly dominated at h ∈ Hi on E.

Consider an arbitrary h ∈ Hi and s′i ∈ Ei such that h is reached by si and s′i via E−i. Pick �∗E−i(h)∈
PCMi (S−i|E−i (h)) that specifies only a preference ordering over constant acts conditioning on

E−i (h). Therefore, s′i �∗E−i(h) si, ∀s
′
i ∈ Si. Thus, si ∈ BRi(PCMi , E) by choosing ℘ ∈ PCMi (·) such

that �℘E−i(h)=�
∗
E−i(h). �

We next provide an algorithm for the PCM -EFR procedure. Consider a (finite) perfect infor-
mation game Γ without relevant ties in the sense of Heifetz and Perea (2015). For expositional

simplicity, we will assume Γ has no trivial moves in the following sense: For every i ∈ N and

h ∈ Hi, player i has at least two moves at decision node h and no consecutive moves at h– i.e.,

h′ /∈ Hi if h′ immediately follows h. We say action a has degree k + 1 if it leads to a node that

has degree k. (An action with degree 1 leads to a terminal node; it is thus a “constant” act in

this situation. Under the assumption that Γ has no trivial moves, the largest degree of action is

KΓ.) Let Akh = {a ∈ Ah : a has degree k}. Let zBI(h) denote the BI terminal node of the subgame

starting from h ∈ H, and let zBI(a) ≡ zBI(ha) where ha is the node that immediately follows from
action a. We define an algorithm for PCM -EFR by iteratively removing inferior strategies, in terms
of constantly dominated actions, from surviving actions that have degree less than or equal to the

number of elimination rounds.

Definition 5. The algorithm for PCM-EFR is defined as
{

Σk
}KΓ

k=0
such that Σ0 ≡ S and for

k = 1, 2, . . . ,KΓ,

Σk ≡ ×i∈N

{
si ∈ Σk−1 : ∀h ∈ Hi(si), ∀si(h) ∈ A≤kh , si(h) = arg max

a∈A≤kh
ui(z

BI(a))

}
,

where A≤kh = ∪κ≤kAκh denotes the set of actions in Ah with degree less than or equal to k.
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Lemma 4. Suppose Γ is a (finite) perfect-information game without relevant ties in the sense of

Heifetz and Perea (2015). Then, for all k ≥ 0, (i) for all h ∈ Hκ (where κ > k), there exist

s, s′ ∈ Σk(h) and s(h) 6= s′(h); (ii) Σk ⊆ BIk and z(Σk (h)) =
{
zBI(h)

}
, ∀h ∈ Hk; and (iii)

BRk(PCM , S) = Σk.

Proof of Lemma 4. (i) Let h ∈ Hκ, where κ > k. Then, there is b ∈ Aκh. If cardinality

|Aκh| > 1, we find another b′ ∈ Aκh; if cardinality |Aκh| = 1, by no trivial moves, we can find another

b′ = arg max
a∈A≤kh

ui(z
BI(a)). By Definition 5,

Σk ≡ ×i∈N

{
si ∈ Si : ∀h ∈ Hi(si), ∀si(h) ∈ A≤kh , si(h) = arg max

a∈A≤kh
ui(z

BI(a))

}
.

Thus, we can construct strategy profiles s and s′ in Σk as follows:

1. s, s′ ∈ S (h), s (h) = b and s′ (h) = b′;

2. s (h′) = s′ (h′) = arg max
a∈A≤k

h′
ui(z

BI(a)) for every h′ ∈ H that has degree less than or equal

to k;

3. s (h′) , s′ (h′) ∈ A>kh′ for every h′ ∈ H that has degree greater than k.

(ii) Let i ∈ N and k = 0, 1, ...,KΓ. By Definition 3,

BIki =
{
si ∈ Si : si(h) = sBIi (h), ∀h ∈ H≤k ∩Hi(si)

}
,

where H≤k = {h ∈ H : h has degree less than or equal to k}. Let si ∈ Σk
i and h ∈ H≤k ∩Hi (si).

Then, A≤kh = Ah and si(h) = arg maxa∈Ah ui(z
BI(a)) = sBIi (h). Thus, si ∈ BIki . Hence, Σk ⊆ BIk.

Now, consider h ∈ Hk. Let ~ be the immediate predecessor of h such that a ∈ A~ leads to h. Then
~ ∈ ∪κ>kHκ. By (i), Σk (h) 6= ∅. Since Σk (h) ⊆ Σk ⊆ BIk, z(Σk (h)) =

{
zBI(h)

}
.

(iii) Denote BRk(PCM , S) = Sk. We prove this result by induction. For κ = 0, the result is

true because S0 = S = Σ0. Suppose Sκ = Σκ for all κ ≤ k. We proceed to show that Sk+1 = Σk+1.

Consider any arbitrary i ∈ N .

Let si ∈ Σk
i \Σk+1

i . Then there is h ∈ Hi(si) such that

si(h) ∈ A≤k+1
h and si(h) 6= arg max

a∈A≤k+1
h

ui(z
BI(a)) ≡ a∗h.

Thus, ui(zBI(a∗h)) > ui(z
BI(si(h))). Let s′ be the constructed strategy profile in the proof of (i)

such that s′(h) = a∗h. Let h
1 and h2 be nodes that immediately follow from si(h) and a∗h. Let
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(si, s−i) ∈ Σk
(
h1
)
and (s′i, s−i) ∈ Σk

(
h2
)
. Since si(h) and a∗h have degree less than or equal to k,

h1, h2 ∈ H≤k. By (ii), z(si, s−i) = zBI(h1) = zBI(si(h)) and z(s′i, s−i) = zBI(h2) = zBI(a∗h) for

all s−i ∈ Σk
−i (h). Therefore, si is conditionally constantly dominated by s′i at h on Σk = Sk. By

Lemma 3, si ∈ Ski \Sk+1
i . That is, Sk+1

i ⊆ Σk+1
i .

Let si ∈ Σk+1
i and h ∈ Hi(si). By Definition 5, we have (1) si(h) ∈ A>k+1

h or (2) si(h) =

arg max
a∈A≤k+1

h
ui(z

BI(a)). In case (1), si(h) leads to some h′ ∈ H>k; thus, si ∈ Σk
i (h′). Since Γ

has no trivial moves, j 6= i moves at h′. By (i), we have s1, s2 ∈ Σk (h′) such that s1
j (h′) 6= s2

j (h′)

and s1
i = si = s2

i . That is, si can lead to at least two different terminal nodes via Σk
−i (h). Because

Γ is without relevant ties in the sense of Heifetz and Perea (2015), si is not a constant-payoff

strategy and thus it is not conditionally constantly dominated at h on Σk. Now consider case (2).

Let s′ ∈ Σk (h). Based on the argument in case (1), it suffi ces to consider s′i (h) ∈ A≤k+1
h . Since

si(h) = arg max
a∈A≤k+1

h
ui(z

BI(a)), by (ii), we have

ui(z
(
si, s

′
−i
)
) = ui

(
zBI(si(h)

)
≥ ui

(
zBI(s′i(h)

)
= z(s′), ∀s′ ∈ Σk (h) .

Thus, si is not constantly dominated by s′i ∈ Σk
i (h) at h on Σk. Therefore, si is not condition-

ally constantly dominated on Σk. By Lemma 3, si ∈ BRi(PCM ,Σk). By induction hypothesis,

BR(PCM ,Σk) = BR(PCM , Sk) = Sk+1. Thus, si ∈ Sk+1
i . That is, Σk+1

i ⊆ Sk+1
i . �

Proof of Theorem 2. Let zBI = z(sBI) denote the outcome resulting from the unique BI strategy

profile sBI in Γ. By Lemma 4(ii) and (iii), BRKΓ(PCM , S) = ΣKΓ ⊆ BIKΓ and z
(
ΣKΓ

)
=
{
zBI
}
.

Therefore, there exists s ∈ BRKΓ(PCM , S)∩ BIKΓ . Since “equivalent” strategies in BIKΓ
i are

indifferent to player i, BIKΓ
i ⊆ BRKΓ

i (PCM , S) must survive the PCM -EFR procedure for every

i ∈ N . Therefore, ΣKΓ = BIKΓ . �

Proof of Corollary 1. (i) Let i ∈ N . For all z, z′ ∈ Z, define

δi
(
z, z′

)
=

{
1, if ui (z) = ui (z′)

|ui (z)− ui (z′)| , if ui (z) 6= ui (z′)
.

Define δ = 1
2 mini∈N minz,z′∈Z |δi (z, z′)|. Let Γε be an ε-perturbation of Γ for suffi ciently small

positive ε ∈ (0, δ). Then, if ‖uεi −ui‖∞ ≤ ε, then ui (z) < ui (z′) implies uεi (z) < uεi (z′), ∀z, z′ ∈ Z.
Since Γ is without relevant ties, Γε is without relevant ties. Moreover, Γε has the same BI strategy

profile of Γ. The result of Corollary 1(i) follows directly from Theorem 1.

(ii) The proof of Corollary 1(ii) is similar to the proof of Corollary 1(i). We thus omit it. �
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8 Appendix+

Theorem 1 shows that EFR is outcome-indistinguishable under certain preference models in the

class of perfect-information games without relevant ties. As demonstrated by the example below,

EFR might generate different outcome sets under different preference models (possibly with non-

Bayesian beliefs) if there are relevant ties. Consider the parameterized game Γ(x, y, z), where

parameters x, y, z ∈ R are payoffs for player 2; player 3’s payoffs are identical on all terminal nodes.

A parameterized game Γ(x, y, z), where x, y, z ∈ R

We consider four models of preference: PSEU(·), POEU(·), PMEU(·) and PSD(·) (cf. Section
5). We will show the following:

• PSEU(·)-EFR and POEU(·)-EFR are outcome-distinguishable in Γ(2, 1, 4).

• POEU(·)-EFR and PMEU(·)-EFR are outcome-distinguishable in Γ(1, 1, 4).

• PMEU(·)-EFR and PSD(·)-EFR are outcome-distinguishable in Γ(1, 0, 0).

The EFR procedures for all of the above games and preference models involve at most 2 rounds

of elimination.

Round 1: Because CLL′ is strictly dominated by S regardless of x, y, z ∈ R, it should be eliminated for
all of the preference models and games Γ(x, y, z).
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Round 2: Conditioning on player 2’s node, player 2 believes that player 1 should play CLR′, CRL′ or

CRR′; player 2’s payoffs can be summarized in the following table. (Note: Player 3’s choices

do not affect payoffs for player 2.)

CLR′ CRL′ CRR′

s x x x

l 1 z z

r 4 y 4

— Γ(2, 1, 4): s is eliminated in PSEU(·) because it is strictly dominated by 0.5s + 0.5r.

However, s cannot be eliminated in POEU(·) because it is not pure-strategy dominated
in Börgers’sense.

— Γ(1, 1, 4): s is pure-strategy dominated in Börgers’ sense so that it is eliminated in

POEU(·). However, s cannot be eliminated in PMEU(·) because s, l, r are indifferent if
player 2 holds a MEU belief that admits the set of all distributions over {CLR′, CRL′, CRR′}.

— Γ(1, 0, 0): l is eliminated in PMEU(·) because (i) l is no worse than s if and only if player
2 holds a single prior belief that assigns probability 1 to CLR′ and (ii) r is strictly better

than l under such belief. However, l is not strictly dominated by s or r and hence is not

eliminated in PSD(·).

In this example, BI and EFR are also outcome-distinguishable: CrR′b′ is not a BI outcome,

but it is an EFR outcome in all of the above models and games. (The possible BI outcomes are S,

ClRa or CrR′a′, in which player 1 achieves the highest payoff 2.)
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